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Introduction
Brucellosis is a zoonotic disease caused by Brucella species. 
It is a significant animal-borne disease that is widespread 
in over 170 countries and regions worldwide. In livestock, 
it commonly presents as a reproductive disorder, while in 
humans, it manifests as a chronic febrile illness. Due to its 
persistent nature and widespread prevalence, the disease 
is challenging to eliminate and poses a significant threat to 
both animal husbandry and human health [1-3].

The endoplasmic reticulum (ER) is a crucial organelle 
that plays a role in maintaining cellular homeostasis [4]. 
It synthesizes intracellular proteins and lipids and has 

close interactions with mitochondria, allowing for 
signaling and substance exchange. Mitochondrial fusion 
protein 2 (MFN2) is a GTPase protein found in the 
outer mitochondrial membrane and the mitochondria-
associated membrane. It acts as a bridge between 
mitochondria and the endoplasmic reticulum, and its 
absence leads to endoplasmic reticulum stress. MFN2 also 
regulates mitochondrial fusion and the transfer of calcium 
from the endoplasmic reticulum to mitochondria [5]. 
Numerous studies have demonstrated the crucial 
role of MFN2 in the innate immune response during 
pathogenic infections [6-8]. Previous studies have shown 
that MFN2 inhibits the antiviral immune response in 
hepatitis B virus-associated hepatocellular carcinoma [6]. 
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Abstract

Mitochondrial fusion protein 2 (MFN2) deficiency has been shown to hinder the 
survival of bacteria in macrophages. Endoplasmic reticulum stress and apoptosis are 
vital defense mechanisms against Brucella infection, but the specific role of MFN2 in 
Brucella-infected macrophages remains unclear. In this study, we aimed to investigate 
the role of MFN2 in the infection of macrophages by Brucella abortus strain A19. The 
levels of CHOP and GRP78, which are molecules associated with endoplasmic reticulum 
stress, as well as Caspase-3 and BAX, which are pro-apoptotic molecules, were measured 
using confocal microscopy, qRT-PCR and Western blot in cell models infected with B. 
abortus A19. Additionally, the apoptosis rate of these cell models was assessed using 
flow cytometry. Our findings revealed a significant decrease in MFN2 levels 24 h post 
B. abortus A19 infection of macrophages. Interfering with MFN2 in macrophages led to 
an increase in Brucella-induced up-regulation of CHOP, GRP78, Caspase-3, and BAX, 
consequently hindering the survival of B. abortus A19 in macrophages. Conversely, 
infecting macrophages that overexpress MFN2 with B. abortus A19 resulted in the 
down-regulation of CHOP, GRP78, Caspase-3, and BAX. MFN2 mediated the down-
regulation of endoplasmic reticulum stress and programmed cell death in B. abortus 
A19-infected macrophages, thereby supported the intracellular survival of Brucella. 
This is the first report to highlight the key role of MFN2 in the intracellular survival 
of Brucella, providing a new perspective for understanding the mechanisms involved 
and offering a potential research direction for the development of targeted therapeutic 
agents against brucellosis.
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In HIV-1 Vpr-infected HEK293 cells, overexpression 
of MFN2 reduces cell death by facilitating interactions 
between the endoplasmic reticulum and mitochondria [7]. 
Additionally, in Mycobacterium tuberculosis-infected 
THP-1 macrophages, MFN2 is involved in the assembly 
and activation of NLRP3 inflammatory vesicles during 
infection [8].

Brucella, an intracellular parasitic bacterium, employs 
various strategies to invade host cells. It primarily targets 
specialized phagocytes like macrophages, dendritic cells, 
as well as non-specialized phagocytes such as fibroblasts 
and trophoblasts. Once inside the host cells, Brucella 
releases effector molecules into the host cytoplasm. 
This facilitates Brucella’s transport to the endoplasmic 
reticulum (ER), resulting in significant reorganization of 
the ER and disruption of its homeostasis. These events 
induce ER stress, triggering the unfolded protein response 
(UPR), which aids in the survival and establishment 
of proliferative compartments [9,10]. In the context of ER 
stress, the transcription factor CHOP plays a crucial role. 
If the ER stress persists and overwhelms the capacity of the 
cellular response, it leads to increased expression of CHOP. 
In turn, CHOP acts as a major pro-apoptotic transcription 
factor, ultimately driving the cells towards apoptosis [11,12]. 
Glucose-regulated protein (GRP78) is a key chaperone 
protein located in the endoplasmic reticulum (ER). It 
is synthesized in response to various stress conditions 
that disrupt ER function and homeostasis [13]. Brucella 
has been shown to regulate apoptosis [14,15]. Inhibition 
of apoptosis in infected cells supports the intracellular 
replication of Brucella [15], with mitochondrial division 
being a crucial step in the apoptotic process. The pro-
apoptotic protein BAX, a member of the Bcl-2 family, is 
recruited to the outer mitochondrial membrane during 
apoptosis, leading to mitochondrial fragmentation and 
blocking of mitochondrial fusion [16]. BAX, which is 
normally distributed in cytoplasmic lysates, plays a role 
in regulating mitochondrial morphology [17]. Brucella has 
been found to interact with mitochondria in host cells, 
a process that is essential for intracellular recycling and 
infection of neighboring cells by Brucella [10]. Caspase-3 is 
also an important marker of apoptosis. Brucella infection 
of RAW264.7 cells for 48 h can induce apoptosis by 
upregulating the expression of caspase-3 via the effector 
protein BtpB [15].

The role of MFN2 in Brucella infected host cells has 
not been investigated. To investigate the role of MFN2 
during Brucella infection of cells, MFN2 was found to 
mediate the down-regulation of endoplasmic reticulum 
stress and programmed death in B. abortus A19-infected 
macrophages and to support the intracellular survival of 
B. abortus A19. Our study provides a theoretical basis 
for further investigation of the MFN2 gene and the 

pathogenesis of Brucella. In addition, the MFN2 gene 
may be a potential target for the future development of 
brucellosis prevention and therapeutic approaches. 

Materials and Methods 
Bacterial Strain and Cell Line

B. abortus A19 was purchased from the Xinjiang Tiankang 
Animal Biotechnology Co. Ltd., China. B. abortus was 
cultured on Tryptic Soy Agar (TSA) or Tryptic Soy 
Broth (TSB) (Oxoid, UK). The culture conditions in 
TSB were aerobic conditions at 37°C, 170 r/min for 3-4 
d. Escherichia coli strains DH5α and BL21 were used to 
transform the PCDNA3.1-EGFP-MFN2 overexpression 
recombinant plasmid and were cultured on Luria-Bertani 
(LB) medium (Oxoid, UK) under aerobic conditions at 
37°C and 170 r/min for 12 h. The mouse macrophage 
RAW264.7 line (RAW264.7, TIB-71) cell line (obtained 
from Cell Resource Center, IBMS, CAMS/PUMC, Beijing, 
China) was cultured in Dulbecco’s modified Eagle’s 
medium (DMEM, Gibco, USA) supplemented with 10% 
fetal bovine serum (FBS, Gibco, USA) at 37°C with 5% 
CO2. All research work on B. abortus A19 was conducted 
in a biosafety level 3 laboratory.

Construction of MFN2 Interference and 
Overexpression Cell Models

The mRNA sequences of CHOP, GRP78, Caspase-3, 
BAX, MFN2 and GAPDH genes of mice published on the 
NCBI website GenBank were retrieved and primers were 
designed using Primer 5.0 (Table1). The siRNA interference 
fragments (siMFN2-2275, siMFN2-450, siMFN2-1661) 
were synthesized by Anhui General Biological Company 
(Anhui, China) (Table 2). The PCDNA3.1-EGFP plasmid 
(Anhui General Bio, China) was digested by Hind III 
and BamH I and ligated with MFN2 gene to construct 
the PCDNA3.1-EGFP-MFN2 recombinant plasmid. 

Table 1. Primer sequence of qRT-PCR

Gene Primer Sequence (5’→3’)

CHOP-F 5’-CTGGAAGCCTGGTATGAGGAT-3’

CHOP-R 5’-CAGGGTCAAGAGTAGTGAAGGT-3’

GRP78-F 5’-ACTTGGGGACCACCTATTCCT-3’

GRP78-R 5’-ATCGCCAATCAGACGCTCC-3’

Caspase-3-F 5’-GAGCTTGGAACGCGAAGAAA-3’

Caspase-3-R 5’-TTGCGAGCTGACATTCCAGT-3’

BAX-F 5’-TGAAGACAGGGGCCTTTTTG-3’

BAX-R 5’-AATTCGCCGGAGACACTCG-3’

MFN2-F 5’-CCAACTCCAAGTGTCCGCTC-3’

MFN2-R 5’-GTCCAGCTCCGTGGTAACATC-3’
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Interference and overexpression systems were constructed 
by transfecting murine macrophage RAW264.7 cells  
with interference fragments and recombinant plasmids 
using Advanced DNA RNA Transfection Reagent (Zeta 
Life, USA).

Detection of Interference Efficiency of siRNA on MFN2

RAW264.7 cells were transiently transfected with 
siMFN2-2275, siMFN2-450, siMFN2-1661, and siMFN2-
Negative interfering sequences at concentrations of 10 
nM/µL as described previously [18], and cellular RNA 
and total protein were collected 48 h after transfection. 
Subsequently, the RNA was reverse transcribed into cDNA 
followed by the use of qRT-PCR to detect the mRNA 
expression level of MFN2. Cellular proteins were collected 
and the MFN2 protein expression level was assessed using 
Western blot analysis. 

Interference efficiency = (siRNA-negative control group 
- siRNA experimental group)/siRNA - negative control 
group × 100%

Detection of Overexpression Efficiency of PCDNA3.1-
EGFP-MFN2 Recombinant Plasmid

The PCDNA3.1-EGFP-MFN2 recombinant plasmid at 
a concentration of 6 μg was transiently transfected into 
RAW264.7 cells as described previously [19], and RNA 
and total protein were collected from the cells at 48 h of 
transfection. Then, the RNA was reverse transcribed into 
cDNA, and the mRNA expression level of MFN2 gene was 
detected by qRT-PCR, and the protein expression level of 
MFN2 was detected by Western blot [19].

Detection of B. abortus A19-Induced CHOP, GRP78, 
Caspase-3, BAX Expression Levels After MFN2 
Interference and Overexpression

Interfering cells and overexpressing cell models were 
infected with B. abortus A19 respectively, and cellular 
RNA and total protein were collected at 24 h post-
infection. Expression levels of endoplasmic reticulum 

stress signature molecules CHOP and GRP78 were 
detected by confocal microscopy. qRT-PCR and Western 
blot were used to detect the mRNA transcript and 
protein expression levels of endoplasmic reticulum stress 
signature molecules CHOP, GRP78 and pro-apoptotic 
genes Caspase-3 and BAX.

Detection of Apoptosis Induced by B. abortus A19 
After MFN2 Interference and Overexpression

B. abortus A19 was used to infect the MFN2-interfering 
cell model and overexpressing cell model, respectively. 
Cells were collected at 24 h post-infection, digested with 
EDTA-free trypsin, adjusted to a cell concentration of 
1-5x105/mL, and centrifuged at 800 rpm for 5 min before 
discarding the supernatant, and the cells were washed 
twice using PBS, and then processed in accordance 
with the apoptosis assay kit (Absin, China), and then 
immediately detected by flow cytometry.

Intracellular Survival of B. abortus A19 After MFN2 
Interference and Overexpression

The best interfering and overexpressing cell models  
were infected with B. abortus A19 respectively, and 
the cells were lysed with 0.02% Triton X-100 at 0, 6, 12, 
and 24 h post-infection, and the lysates were coated in 
B. abortus solid medium and assayed for intracellular 
survival of Brucella by CFU counting with reference to the 
experimental method of Zhang et al.[20].

Confocal Microscopy Inspection

After 24 h of infection with B. abortus A19 in interfering 
and overexpressing cell models, cells were fixed on 
coverslips using 4% paraformaldehyde for 15 min. 
Subsequently, coverslips were rinsed thrice with PBS, 
and cells were treated with 0.2% Triton X-100 for 5 min. 
After another round of rinsing with PBS, cells underwent 
blocking in a blocking solution for 1 h. The primary 
antibody was then diluted with PBST and incubated in 
a dark, humid environment for 1 h at 4ºC. Samples were 
incubated overnight, followed by washing thrice with 
PBST. The secondary antibody was diluted with PBST 
and samples were incubated for 1 h at room temperature 
in a dark, humid environment. After another round of 
washing with PBST, samples were sealed on slides using 
a DAPI-containing sealing agent, and finally examined 
under a fluorescence microscope.

qRT-PCR Detection

After infection of the interfering and overexpressing  
cell models by B. abortus A19, total RNA from the cells  
was collected and reverse transcribed to cDNA, and 
GAPDH was used as an internal reference, using the 
SYBR Green Master Mix kit (Roche, Switzerland) 
on QuantStudio 3 (ThermoFisher, USA). Real-time 

Table.2. Interference sequence of MFN2 siRNA

Name Sequence (5’→3’)

siMFN2-450-F 5’-ACACAUGGCUGAAGUGAAUTT-3’

siMFN2-450-R 5’-AUUCACUUCAGCCAUGUGUTT-3’

siMFN2-1661-F 5’-CGGAGGAAGUGGAAAGGCATT-3’

siMFN2-1661-R 5’-UGCCUUUCCACUUCCUCCGTT-3’

siMFN2-2275-F 5’-GCAGUGGGCUGGAGACUCATT-3’

siMFN2-2275-R 5’-UGAGUCUCCAGCCCACUGCTT-3’

siMFN2-Negative-F 5’-UUCUCCGAACGUGUCACGUTT-3’

siMFN2-Negative-R 5’-ACGUGACACGUUCGGAGAATT-3’
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fluorescent quantitative PCR was performed, and 
the 2-ΔΔCt method was used to calculate the relative 
expression of CHOP, GRP78, Caspase-3, BAX and MFN2 
mRNAs.

Western Blot Detection

B. abortus A19 infected cells were washed 3 times with 
PBS, lysed on ice for 10 min by adding lysis solution 
(1mLRIPA+10 µLPMSF), the lysate was collected and 
total protein was collected by centrifugation at 4ºC, 12000 
rpm for 5 min, and the protein was adjusted by BCA 
protein quantitative assay kit (ThermoFisher, USA). The 
concentration of protein was adjusted by BCA protein 
quantification kit (ThermoFisher, USA), separated by 
12% SDS-PAGE and transferred to nitrocellulose (NC) 
membrane, closed with closure solution (5% skimmed 
milk powder in TBST) for 2 h at 37ºC, washed 3 times 
with PBS and incubated with primary antibody diluted 
with TBST overnight at 4ºC, washed 3 times with TBST 
and incubated with secondary antibody diluted with 
TBST at room temperature for 2 h. The membrane was 
washed with TBST 3 times and then stained with an ECL 
kit (ThermoFisher, USA).

Statistical Analysis

Data on intracellular CFU of Brucella were transformed 
into logarithms. The experimental data were analysed by 
One-Way ANOVA and 2 way ANOVA using SPSS 25.0 
software (International Business Machines Corporation, 
USA), and the results were expressed as mean ± standard 
deviation, with P<0.05 considered statistically significant. 
GraphPad Prism 7.0 software (GraphPad  Software, 
USA) was used to plot the data. All experiments were 
independently performed at least three times.

Results
B. abortus A19 Infection Induces a Decrease in 
Macrophage MFN2 Expression

Cells were collected at 6 h, 12 h and 24 h after B. abortus 
infection and the expression level of MFN2 was analysed 
by qRT-PCR and Western blotting. The results showed 
that the mRNA transcript level (P=0.0047) and protein 
expression level (P=0.028) of MFN2 were significantly 
reduced 24 h after B. abortus A19 infection of RAW264.7 
cells, indicating that B. abortus A19 induced a decrease in 
macrophage MFN2 expression over time (Fig. 1).

Fig 1. Detection of MFN2 mRNA and protein expression levels after B. abortus A19 infection. (A) Levels of MFN2 
protein expression in RAW264.7 after infection with B. abortus A19 for 6, 12 and 24 h, (B) Negative control RAW264.7 
cells MFN2 protein expression level after 6, 12 and 24 h (C), The ratio of cleaved MFN2 relative to β-actin levels was 
calculated using ImageJ. The experiment was repeated three times and data represent mean ± SD, (D) MFN2 mRNA 
expression levels were detected by qRT-PCR after 6 h, 12 h, and 24 h of Brucella abortus A19 infection in RAW264.7 
cells. *P<0.05; **P<0.01
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Infection and Overexpression Cell Model Construction

The optimal interfering sequence was screened using 
qRT-PCR and Western blotting. The results showed that 
siMFN2-1661 had the highest inhibition rate (P<0.001) 
of MFN2 mRNA compared with the control group 
(siMFN2-Negative group) (Fig. 2-A,B,C). This suggests 
that siMFN2-1661 is the best interfering fragment for 
constructing the MFN2 gene interference cell model.

After transfection of the recombinant plasmid PCDNA3.1-
EGFP-MFN2 into RAW264.7 cells for 48h, a large amount 
of green fluorescent protein expression was observed by 
inverted fluorescence microscopy (Fig. 2-D), indicating that 
the overexpression recombinant plasmid was successfully 
transfected. qRT-PCR results showed that compared 
with the control group (PCDNA3.1-EGFP group), the 
overexpression group (PCDNA3.1-EGFP-MFN2 group) 
had a significantly higher expression level of MFN2 mRNA 
than the control group, and the expression amount was 
about 8 times higher than that of the non-overexpressed 
group (PCDNA3.1-EGFP group) (P<0.001) (Fig. 2-E). 
The Western blotting results showed that the expression 
level of MFN2 protein in the overexpression group 
was significantly higher than that in the control group 
(P<0.001) (Fig. 2-F,G), indicating that the MFN2 gene 
overexpression cell model was successfully constructed. 

B. abortus A19 Infection of MFN2 Deficient 
Macrophages Causes Up-Regulation of CHOP, GRP78, 
Caspase-3 and BAX

The interfering cell model was infiltrated with B. abortus 
A19, and the RNA and total protein of the infected 
cells were collected 24 h later. Results showed that the 
levels of mRNA transcript and protein expression of 
CHOP and GRP78, which are characteristic molecules 
of endoplasmic reticulum stress, in the interference 
group were significantly higher than those in the control 
group (Fig. 3-A,B,C,D,G,H). The apoptotic molecules 
Cleaved caspase-3 and BAX mRNA transcript and 
protein expression levels were significantly higher in 
the interference group than in the control group (Fig. 
3-E,F,I,J). The results suggest that interference with the 
MFN2 gene enhances the ability of B. abortus A19 to 
induce endoplasmic reticulum stress and apoptosis.

B. abortus A19 Infection of Macrophages 
Overexpressing MFN2 Results in Down-Regulation of 
CHOP, GRP78, Caspase-3 and BAX

B. abortus A19 infection overexpression cell model, results 
showed that the endoplasmic reticulum stress signature 
molecules CHOP, GRP78 mRNA transcript level and 
protein expression level were significantly reduced in 

Fig 2. MFN2 overexpression and interference cell model construction. (A) qRT-PCR screening for the best interfering fragments of MFN2, (B) Western blot 
screening for the best interfering fragments of MFN2, (C) The ratio of cleaved MFN2 relative to β-actin levels was calculated using ImageJ. The experiment 
was repeated three times and data represent mean ± SD, (D) Transfection efficiency of PCDNA3.1-EGFP-MFN2 overexpression recombinant plasmid by 
fluorescence microscopy. (a, b: PCDNA3.1-EGFP transfection of RAW264.7 in bright and dark field view, b, c: PCDNA3.1-EGFP-MFN2transfection of 
RAW264.7 in bright and dark field view), (E) Efficiency of MFN2 gene overexpression detected by qRT-PCR, (F) Efficiency of MFN2 gene overexpression 
detected by Western blot, (G) The ratio of cleaved MFN2 relative to β-actin levels was calculated using ImageJ. The experiment was repeated three times 
and data represent mean ± SD. **P<0.01; ***P<0.001
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Fig 3. Expression levels of CHOP, GRP78, caspaes-3 and BAX were detected in the interfering cell model. (A) Confocal microscopy to detect CHOP 
spots 24 h after infection with the interfering cell model. CHOP spots are presented in green (FITC), while blue (DAPI) denotes nucleus, (B) Confocal 
microscopy to detect GRP78 spots 24 h after infection with the interfering cell model. GRP78 spots are presented in green (FITC), while blue (DAPI) 
denotes nucleus, (C)The expression level of GRP78 mRNA was detected by qRT-PCR after infection with B. abortus A19 in the interference cells model, (D)
The expression level of CHOP mRNA was detected by qRT-PCR after infection with B. abortus A19 in the interference cells model, (E) The expression level 
of BAX mRNA was detected by qRT-PCR after infection with B. abortus A19 in the interference cells model, (F) The expression level of cleaved caspase-3 
mRNA was detected by qRT-PCR after infection with B. abortus A19 in the interference cells model, (G) Expression levels of CHOP and GRP78 protein 
after infection with B. abortus A19 in the interference cells model, (H) The ratio of CHOP (a) and GRP78 (b) relative to β-actin levels was calculated using 
ImageJ. The experiment was repeated three times and data represent mean ± SD, (I) Expression levels of Cleaved caspase-3 and BAX protein after infection 
with B. abortus A19 in the interference cells model, (J) The ratio of cleaved caspase-3 (a) and BAX (b) relative to β-actin levels was calculated using ImageJ. 
The experiment was repeated three times and data represent mean ± SD. *P<0.05; **P<0.01; ***P<0.001
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Fig 4. Expression levels of CHOP, GRP78, caspase-3 and BAX were detected in the overexpressing cell model. (A) Confocal microscopy to detect CHOP 
spots 24 h after infection with the overexpressing cell model. CHOP spots are presented in green (FITC), while blue (DAPI) denotes nucleus, (B) Confocal 
microscopy to detect GRP78 spots 24 h after infection with the overexpressing cell model, (C) The expression level of CHOP mRNA was detected by 
qRT-PCR after infection with B. abortus A19 in the overexpressing cell model, (D)The expression level of GRP78 mRNA was detected by qRT-PCR after 
infection with B. abortus A19 in the overexpressing cell model, (E) The expression level of BAX mRNA was detected by qRT-PCR after infection with B. 
abortus A19 in the overexpressing cell model, (F) The expression level of cleaved caspase-3 mRNA was detected by qRT-PCR after infection with B. abortus 
A19 in the overexpressing cell model, (G) Expression levels of CHOP and GRP78 protein after infection with B. abortus A19 in the overexpressing cell 
model, (H) The ratio of CHOP (a) and GRP78 (b) relative to β-actin levels was calculated using ImageJ. The experiment was repeated three times and data 
represent mean ± SD, (I) Expression levels of Cleaved caspase-3 and BAX protein after infection with B. abortus A19 in overexpressing cell model, (J) The 
ratio of cleaved caspase-3 (a) and BAX (b) relative to β-actin levels was calculated using ImageJ. The experiment was repeated three times and data represent 
mean ± SD. *P<0.05; **P<0.01; ***P<0.001
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Fig 5. Apoptosis and B. abortus A19 intracellular survival in the B. abortus A19-induced interfering cell model. (A) Detection of apoptosis in B. 
abortus A19-induced interfering cell model cells by flow cytometry, (B) Bar graph of apoptosis rates in B. abortus A19-induced interfering cell 
models, (C) B. abortus A19 bacterial load in a model of interfering cells. ***P<0.001

Fig 6. Apoptosis and B. abortus A19 intracellular survival in the B. abortus A19-induced overexpression cell model. (A) Detection of 
apoptosis in B. abortus A19-induced overexpression cell model by flow cytometry, (B) Bar graph of apoptosis rate in B. abortus A19-induced 
overexpressing cell models, (C) B. abortus A19 bacterial load in a model of overexpression cells. *P<0.05; ***P<0.001
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the overexpression group compared with the control 
group (Fig. 4-A,B,C,D,G,H), and the apoptosis signature 
molecules Cleaved caspase-3, BAX mRNA transcript and 
protein expression levels were also significantly reduced 
(Fig. 4-E,F,H,J). This indicates that overexpression of 
MFN2 gene decreases the ability of B. abortus A19 to 
induce endoplasmic reticulum stress and apoptosis.

B. abortus A19 infection with Macrophages 
Lacking MFN2 Results in Decreased B. abortus A19 
Intracellular Survival

B. abortus A19 infection was observed to have an impact 
on the MFN2 model cells. The cells were lysed at different 
time intervals and the number of viable bacteria inside 
the cells was measured. The results showed a significant 
decrease in the number of intracellular B. abortus A19 
in the MFN2-interfered group at 12 h and 24 h, as 
compared to the control group (siMFN2-Negative group) 
(P<0.001) (Fig. 5-C). Additionally, at 24 h post-infection, 
cells were collected and apoptosis was evaluated using 
flow cytometry. The findings indicated a significantly 
higher rate of apoptosis in the MFN2-interfered group, as 
compared to the control group (siMFN2-Negative group) 
(P<0.001) (Fig. 5-A,B).

Infection of B. abortus A19 with Macrophages 
Overexpressing MFN2 Leads to an Increase in B. 
abortus A19 Intracellular Survival

B. abortus A19 was infected with cells that overexpressed 
the MFN2 model. The cells were then lysed, and the 
number of surviving bacteria within the cells was counted. 
The results showed a significant increase in the number of 
B. abortus A19 within the cells in the MFN2 overexpression 
group at 24 h, compared to the control group (PCDNA3.1-
EGFP) (P=0.020) (Fig. 6-C). Furthermore, at 24 h post-
infection, cells were collected and assessed for apoptosis 
using flow cytometry. The results indicated a significantly 
lower apoptosis rate in the MFN2 overexpression group, 
compared to the control group (PCDNA3.1-EGFP) 
(P<0.001) (Fig. 6-A,B). These results suggest that MFN2 
plays a role in down-regulating programmed death in 
B. abortus A19-infected macrophages and supports the 
intracellular survival of Brucella.

Discussion
Brucella is a very “cunning” pathogen that evades the 
host immune system by translocating to the endoplasmic 
reticulum in the form of Brucella vesicles, leading to 
chronic infections [21,22]. Macrophages express high 
levels of MFN2, which not only regulates endoplasmic 
reticulum stress but also plays a crucial role in immune 
response regulation [23,24]. MFN2 is also involved in 
maintaining cellular autophagy. In the absence of MFN2 
protein, autophagosomes accumulate, leading to reduced 

autophagic flux and increased apoptosis. However, this 
also results in attenuated apoptotic bodies and bacterial 
phagocytosis [25]. Pathogens have developed various 
mechanisms to manipulate MFN2 and influence their 
survival within host cells. In this study, we discovered that 
MFN2 is responsible for down-regulating endoplasmic 
reticulum stress and programmed cell death in B. abortus 
A19-infected macrophages, thereby supporting the 
intracellular survival of B. abortus A19.

Macrophages are the main target cells of Brucella 
infections, and in general, Brucella undergo immune 
escape by inhibiting apoptosis to ensure their intracellular 
survival [26], whereas macrophages themselves enhance 
the body’s killing of pathogenic bacteria and control their 
intracellular multiplication by regulating apoptosis [27]. 
Among several apoptotic pathways, the endoplasmic 
reticulum stress-induced apoptosis pathway is favoured 
by scholars. The endoplasmic reticulum is involved in the 
maintenance of cellular homeostasis and can save calcium 
ions in large quantities, and it is also the main site of Brucella 
proliferation, when pathogenic bacteria infection, calcium 
ion homeostasis imbalance and redox environment 
disorders, it will lead to endoplasmic reticulum stress [28], 
if the endoplasmic reticulum homeostasis can not be 
restored for a long time, apoptosis will occur, and the 
ability of Brucella to induce cellular endoplasmic reticulum 
stress has been proved by a large number of scholars [29], 
the present study found that MFN2 disruption promotes 
B. abortus A19-induced expression of the endoplasmic 
reticulum stress signature molecule CHOP and GRP78, 
whereas MFN2 overexpression does the opposite, 
indicating that deletion of MFN2 enhances the ability of 
B. abortus to induce endoplasmic reticulum stress, which 
is similar to that found in the mouse fibroblast cell model 
of MFN2 gene deletion [23], which may be attributed to the 
fact that MFN2 deletion affected the coupling between 
the endoplasmic reticulum and mitochondria, disrupting 
the normal morphology of the endoplasmic reticulum, 
and possibly because MFN2 deletion interfered with 
the calcium transfer between the two, resulting in an 
imbalance of calcium ion homeostasis in the endoplasmic 
reticulum and aggravating the endoplasmic reticulum 
stress; in addition, we found that MFN2 interference 
enhanced the expression of Caspase-3 and BAX, a pro-
apoptotic protein induced by B. abortus A19, and the 
flow results also further demonstrated that apoptosis rate 
increased after MFN2 interference, while the opposite 
was true for MFN2 overexpression, suggesting that MFN2 
deficiency enhances B. abortus-induced apoptosis, which 
is similar to the findings of Lee et al. in M. tuberculosis-
infected macrophages [30], which may be attributed to the 
fact that MFN2 deficiency interferes with the normal 
transmission of calcium ions between the endoplasmic 
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reticulum and mitochondria, resulting in mitochondrial 
calcium ions overload and apoptosis, or it may be 
because MFN2 deficiency exacerbates mitochondrial 
fragmentation and impairs mitochondrial function and 
apoptosis occurs, but these are only speculations, and 
the specific mechanisms remain to be investigated. The 
results of the intracellular survival assay showed that 
MFN2 interference decreased the viable bacterial count of 
B. abortus A19 in macrophages, while the opposite was 
true for MFN2 overexpression, suggesting that the ability 
of B. abortus A19 to survive intracellularly was suppressed 
to a certain extent after MFN2 deletion, which, combined 
with the results of the apoptosis assay, suggests that it 
may be due to the fact that MFN2 deletion exacerbated 
the cellular apoptosis, so that Brucella was deprived of a 
place to shelter its survival, and thus was recognised and 
removed by the host, this result is similar to the findings 
of Lee et al.[30] in M. tuberculosis-infected macrophages, 
and in contrast to the findings of Lobet et al.[31] who found 
that MFN2 deletion did not affect the survival of Brucella 
in Hela cells, and that the discrepancy the reason may 
be because RAW264.7 cells are professional phagocytes, 
which are more sensitive to Brucella invasion and have a 
stronger ability to bind to Brucella as well as phagocytose 
and clear Brucella compared to non-professional 
phagocytes, Hela, or it may be because the B. abortus A19 
belongs to a weakly virulent strain, which is inherently 
weaker in terms of surviving in macrophages [32].

In conclusion, as a key regulator of the innate immune 
response during pathogenic infection, Mfn2 can mediate 
the down-regulation of endoplasmic reticulum stress 
and programmed death in B. abortus A19-infected 
macrophages and support the intracellular survival 
of Brucella. The present study provides experimental 
This study provides an experimental basis for a better 
understanding of the function of MFN2 gene during 
Brucella infection and the elucidation of the pathogenic 
mechanism of Brucella, as well as a basis for the 
development of potential targets for preventive and 
therapeutic programmes against brucellosis.
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