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Abstract: The One Health approach shows that people, animals, plants, and environmental factors can affect each other. Phages are one of the 
mobile genetic elements. Quinolones are a critical group of antibiotics for both human and animal health and monitoring their antimicrobial 
resistance is very important. The aim of the study is to determine the frequency of the quinolone resistance gene in bacteriophage DNA 
fractions obtained from healthy calf stool samples. In our study, 50 samples from 6-9 months old calves, which were found to be healthy 
and not treated with any group of antibiotics in Sanlıurfa province, were included. DNA isolation was made from phage lysates of stool 
samples and specific primers were used qnrA, qnrB and qnrS genes. qPCR was performed on LightCycler480. Despite not receiving any 
antibiotic treatment, qnrB was the most detected gene among the phage DNA fractions detected in 11 calves. While qnrA, qnrB and qnrS 
quinolone resistance genes were detected together in one sample, qnrB and qnrS resistance genes were found together in two samples. Our 
data, obtained from the study in Türkiye to search for antimicrobial resistance genes in phage fractions, showed the importance of the One 
Health approach and determined that it was highly effective in quinolone resistance gene shedding in healthy calves that had never been 
treated with antibiotics. It has been concluded that in empirical treatment with quinolone, attention should be paid to all living things and 
unconscious antibiotic use may cause the spread of resistance genes more than expected.
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Sağlıklı Buzağı Dışkı Örneklerindeki Bakteriyofaj DNA 
Fraksiyonlarındaki Kinolon Direnç Genlerinin qPCR ile Belirlenmesi

Öz: “Tek Sağlık” yaklaşımı, insanların, hayvanların, bitkilerin ve çevresel faktörlerin birbirini etkileyebileceğini gösterir. Fajlar, hareketli 
genetik elemanlardan biridir. Kinolonlar hem insan hem de hayvan sağlığı için kritik bir antibiyotik grubudur ve antimikrobiyal dirençlerinin 
izlenmesi çok önemlidir. Bu nedenle çalışmamızın amacı, sağlıklı buzağı dışkı örneklerinden elde edilen bakteriyofaj DNA fraksiyonlarında 
kinolon direnç gen belirteçlerinin (qnrA, qnrB ve qnrS genleri) sıklığını belirlemektir. Çalışmamıza Şanlıurfa ilinde bulunan mandıralardan 
alınan 6-9 aylık buzağılardan sağlıklı olduğu tespit edilen ve herhangi bir grup antibiyotik ile tedavi edilmeyen 50 dışkı örneği dahil 
edildi. Dışkı numunelerinin faj lizatlarından DNA izolasyonu yapılmış ve qnrA, qnrB ve qnrS genleri için spesifik primerler kullanılmıştır. 
qPCR, LightCycler480’de gerçekleştirilmiştir. Hiçbir antibiyotik tedavisi görmemesine rağmen 11 buzağı dışkısında tespit edilen faj DNA 
fraksiyonları arasında en çok tespit edilen gen qnrB idi. Bir örnekte qnrA, qnrB ve qnrS kinolon direnç gen belirteçleri birlikte saptanırken, 
iki örnekte qnrB ve qnrS direnç gen belirteçleri birlikte bulundu. Türkiye’de faj fraksiyonlarında antimikrobiyal direnç geni araştırması 
yapan çalışma ile elde edilen verilerimiz, “Tek Sağlık” yaklaşımının önemini göstermiş, ayrıca sağlıklı, antibiyotikle hiç tedavi edilmemiş 
buzağılarında kinolon direnç geni saçılımında oldukça etkili olduğu belirlenmiştir Kinolon ile ampirik tedavide tüm canlılara dikkat edilmesi 
gerektiği ve bilinçsiz antibiyotik kullanımın tahmin edilenden fazla direnç genlerinin yayılmasına neden olabileceği sonucuna varılmıştır.

Anahtar sözcükler: Antibiyotik direnç genleri, Bakteriyofaj, qPCR, Kinolon
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Introduction 
Bacterial antimicrobial resistance (AMR), which reduces 
the effect of drugs used to treat bacterial infections, 
threatens the whole world as one of the leading public 
health problems of the 21st century. According to the 
reports of the World Health Organization (WHO), it is 
estimated that 10 million people will die in 2050 due to 
antimicrobial resistance [1]. The One Health approach 
indicates that factors originating from humans, animals, 
plants and the environment can have effects on each 
other. Therefore, it is thought that the development of 
antimicrobial resistance may be related to the misuse 
of antimicrobials in these resources and contribute 
to the spread of antimicrobial resistant bacteria and 
antimicrobial resistance markers throughout the world 
within or between these sectors. It is a well-known fact 
that many similar classes of antimicrobials used to treat 
bacterial infections in humans are also frequently used 
in animals [2]. Transduction by bacteriophages (phages) 
is one of the many horizontal gene transfer mechanisms 
and it has been demonstrated that phage-mediated 
transduction makes an important contribution to the 
spread of antimicrobial resistance genes [3,4]. 

Bacteriophages are known as bacterial viruses that invade 
the cells of Gram-positive and Gram-negative bacteria [5]. 
According to their genomic and morphological structures, 
there is a wide variety among phages. The size of phage 
genomes can range from a number of to 100 kb [6]. It is 
known that ARGs are transferred to the environment from 
antibiotic-resistant bacteria when bacteriophages invade 
these bacterial cells [7,8]. Phages are one of the mobile 
genetic elements (MGEs), and antimicrobial resistance 
genes (ARGs) can be acquired and transferred between 
bacteria via these MGEs such as phages, conjugative 
plasmids, insertion sequences, integrons, and transposons [9]. 
Metagenomic studies have shown that due to the 
bacterial diversity in the gut microbiota, bacteriophages 
can also be found extensively in the human and animal 
gut microbiota, and that the gut is an excellent ecological 
environment for these phages, which can probably 
proliferate by infecting bacterial communities of the 
gut. In addition to this, ARGs of Gram-negative and 
Gram-positive bacteria can be carried and transferred 
within these phage DNA fractions [10,11]. Quinolones 
and fluoroquinolones have been classified as critical 
antibiotics for human health by the WHO. Resistance to 
these compounds is widespread in Europe, and due to this 
rapid spread, monitoring of antimicrobial resistance to 
quinolones is crucial for both human and animal health [12]. 
The most common disease treated in cattle is the neonatal 
calf diarrhea. According to the recommendations and 
depending on the results of antimicrobial susceptibility 
test, the use of quinolones in the treatment of this disease 

should be in a limited amount and should be used as a 
last choice in the treatment in cases of diarrhea due to E. 
coli and Salmonella spp. infections [13]. However, some 3rd 
generation fluoroquinolones, such as enrofloxacin, can be 
used empirically for the treatment of several diseases of 
animals, which may lead to the development of resistance 
genes against quinolones [14]. 

In our study, we aimed to determine the frequency of 
quinolone resistance gene markers (qnrA, qnrB and qnrS 
genes) by qPCR, which are critical for human and animal 
health, in bacteriophage DNA fractions obtained from 
healthy calf stool samples.

Material and Methods 
Ethical Statement 

This study was approved by the Veterinary Control Central 
Research Institute Local Ethics Committee (Approval no: 
2022/24). 

Sampling and DNA Isolation

In our study, random sampling was used to select stool 
samples. 50 stool samples taken from 6-9 months old 
Holstein calves (25 male and 25 female) from the dairy 
farms in Sanliurfa, that were found to be healthy and not 
treated with any kind of antibiotics, were included. Stool 
samples were taken into sterile containers and delivered 
to the laboratory under appropriate conditions. All 
stool samples were checked for the Bovine Coronavirus 
(BcoV), Bovine Rotavirus (BRV) group A, Escherichia coli 
K99+, Cryptosporidium parvum and Giardia by using the 
Anigen Rapid BoviD-5 Ag rapid test kit (Bionote, Inc. 
Korea) according to the instructions of manufacturer. No 
pathogen was detected in these 50 stool samples which 
were included in the study.

Standard PCR Procedures

Stool samples were diluted with a 1:5 (weight/volume) ratio 
in PBS solution and homogenized with magnetic stirrer 
for 15 min (2 g stool sample were homogenized in 10 mL 
of PBS). The homogenate was centrifuged at 3.000 x g 
and the phage lysate or the homogenate was concentrated 
by purification. DNase (100 U/mL) was added in order 
to eliminate free DNA outside the phage particles in the 
suspension [11]. The phage DNA fraction was extracted from 
the 200 µL homogenate suspension by using the QIAamp 
DNA stool minikit (Qiagen GmbH, Hilden, Germany) 
according to the instructions of manufacturer [15]. 

qPCR Procedures

Quinolone resistance gene markers (qnrA, qnrB and qnrS 
genes) were analyzed by using the qPCR method in the 
LightCycler 480 system according to the instructions 
of manufacturer. Specific primers for qnrA, qnrB and 
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qnrS genes and the qPCR procedure were used for the 
detection of antimicrobial resistance gene markers [16]. 
qPCR reactions were performed in accordance with the 
instructions of manufacturer by using the specific primers, 
LightCycler 480 Sybr Green I Master kit. 5 µL template 
DNA and 15 µL PCR master mix (3 µL sterile water, 1 µL 
forward primer [10 mmol/L], 1 µL reverse primers [10 
mmol/L] and 10 µL master mix) were added in 96-wells. 
qPCR melting analysis was performed for both internal 
control of DNA presence and specific qnr determination.

Results
Antimicrobial resistance gene markers of qnrA, qnrB and 
qnrS genes detected in phage DNA fractions obtained 
from 50 stool samples which were included in the study 
are shown in Table 1. Quinolone resistance gene markers 
were detected in the phage DNA fractions which were 
detected in a total of 11 samples (22%), whereas quinolone 
resistance gene markers were not detected in remaining 
39 samples (78%). Among the quinolone resistance genes, 
the most commonly detected one was qnrB gene which 
was found in 7 (14%) samples.

While qnrA, qnrB and qnrS quinolone resistance gene 
markers were detected together in one sample (6%), qnrB 
and qnrS gene resistance gene markers were detected 
together in two samples (4%) and shown in Table 2.

Discussion 
Antibiotic resistance is an important and expanding public 
health problem. For this reason, many studies are currently 

being conducted about the mechanisms and spread of 
antibiotic resistance. The contribution of bacteriophages 
to the mobilization of ARGs in the environment is known 
but this issue has not been extensively studied. However, 
recent studies suggest that phages play an important role 
in animal and human diseases [17-20]. Therefore, in our 
study, we focused on the detection of quinolone resistance 
gene markers in phage lysates in healthy calf stool samples.

It has been determined as a result of many studies that, 
phages have the potential to be a reservoir and vector for 
the acquisition of ARGs [20,21]. Furthermore, it has been 
shown in several studies that transfer of ARGs is done 
by phages through transduction in natural environments 
such as mud, wastewater, sediment, soil, animal and 
human stool [22-28]. 

In our study, ARG scanning was performed on healthy 
calf stool samples and the rate was determined as 22%. 
Although the mechanism of AMR spread is not known 
exactly, it is generally thought that it occurs as a result of 
unconscious antibiotic use in both humans and animals. 
It is known that there is a continuous flow of ARGs among 
humans, animals and the environment in which they form 
a triad on the ecosystem, and it is planned to carry out the 
necessary controls and applications at these 3 key points 
in order to prevent the flow of ARGs.

The contribution of phages to the spread of antibiotic 
resistance is not fully known. Some recent researches 
suggest that the role of ARG-bearing phages in the 
environment is much more important than previously 
thought [29]. For this reason, many studies have investigated 
the transport of ARGs in bacteriophage DNA fractions in 
samples of sludge, wastewater, sediment, soil, water, and 
animal and human stool. The key role played by phages 
in the construction of the bacterial microbiota of the 
human gut flora has been extensively investigated by Mills 
et al.[30], Scanlan [31], and Guerin and Hill [32]. Camarillo-
Guerrero et al.[33] showed in their study that the gene flow 
produced by phages is not limited to a single bacterial 
species or genus, but they form gene flow networks among 
phylogenetically different bacteria. Phages dominate the 
viral fraction of the human gut microbiota [34,35]. Up to 
1012 virus-like particles (VLP) per mL in human stool 
have been reported by Hoyles et al.[36]. Camarillo-Guerrero 
et al.[33] have identified more than 142,000 redundant viral 
genomes in the human gut, mostly belonging to phages. 
Dutilh et al.[37] and Edwards et al.[38] determined in their 
studies that crAssphage and crAss-like phages are quite 
common worldwide. CrAss-like phages are associated 
with Bacteroidetes, which is the most abundant bacteria 
phylum in the human gut microbiota [39].

In the study of Quirós et al.[11], within the stool of 80 healthy 
human, ARGs were detected in 70% of the samples. The 

Table 1. Distribution of quinolone resistance gene markers in phage DNA 
fractions

Result
Positive

n %

Total qnrA 4 8

Total qnrB 7 14

Total qnrS 6 12

Table 2. Distribution of quinolone resistance gene markers in phage DNA 
fractions

Result
Positive 

n %

qnrA only 1 2

qnrB only 3 6

qnrS only 2 4

qnrA + qnrB 1 2

qnrA + qnrS 1 2

qnrB + qnrS 2 4

qnrA + qnrB + qnrS 1 2
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most detected genes in bacteriophage DNA fragments 
isolated in the study were blaTEM, qnrA and blaCTX-M-1 
genes. Brown-Jaque et al.[39], in their study, determined 
the rates of 9 ARGs (blaTEM, blaCTX-M, blaCTX-M-9, 
blaOXA-48, qnrA, qnrS, mecA, sul1, and armA) found 
in the bacteriophage DNA fragments obtained from 150 
healthy human stool. 72% of the samples included in the 
study were positive for at least one ARG.

In several studies, fluoroquinolone resistance genes (qnrA 
and qnrS) were frequently detected in environmental 
samples [25-27]. Similarly, in our study, qnrA and qnrS genes 
were detected in DNA fractions of phages found in the 
healthy calf stool. Colomer-Llunch et al.[15] detected qnrA 
and qnrS in bacteriophage DNA fragments obtained from 
samples of urban wastewater, river water and animal stool 
and they suggested that qnr-encoding phages might be 
generalized transforming particles. It is thought that the 
presence of qnr-encoding phages is an important factor 
for the formation of quinolone resistant strains and the 
spread of ARGs [40].

To investigate the contribution of bacteriophages to 
the spread of resistance genes, in China, a large-scale 
screening for 32 ARGs was performed in pig stool from 
three different commercial farms. The most common 
gene detected as a result of this scan was the qnrA gene [41]. 
Transfer of ARGs to the environment is a critical issue for 
both human and animal health. In several other studies 
conducted about the bacteriophage DNA fractions, a 
large number of ARGs have been similarly detected in 
waters contaminated with human and animal stool [42,43]. 
Although the fact that our study is single-centred and 
performed with a low number of samples in which these 
seem to be our limitations, it is still valuable in terms of 
presenting a preliminary data on this situation in our 
country. 

As a result, our data, which is the study on the antimicrobial 
resistance genes in phage fractions in our country, showed 
that a One Health approach is very important, because it has 
been found that bacteriophage fractions can be detected in 
the stool of healthy calves and quinolone resistance genes 
can be carried in these fractions. It has been concluded 
that antibiotics, quinolone groups particularly, which 
are frequently used in different areas, can be transported 
through these phages and so, the antibiotic applications 
should be done carefully regardless of the type of living 
organism, whether it is animal or human.
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