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Abstract

Pollinator populations, which play a critical role in maintaining global ecosystem health,
have been experiencing marked declines worldwide due to widespread pesticide usage.
However, early behavioral indicators of lethal stress induced by chemical exposure remain
insufficiently characterized, largely because conventional ecotoxicological assessments
predominantly focus on mortality-based endpoints. In this study, we evaluated the
potential to predict mortality risk at an early stage using behavioral markers, based on
1.506 behavioral observation records collected from seven bee species exposed to lambda-
cyhalothrin. To this end, we implemented explainable artificial intelligence models,
including Random Forest, XGBoost, and LightGBM, and interpreted the model outputs
using SHAP analysis. Among these models, Random Forest and XGBoost demonstrated
the strongest performance in distinguishing high mortality risk, achieving an accuracy of
0.873 onan independent test dataset. SHAP-based model interpretation revealed a temporal
behavioral progression associated with elevated mortality risk: cramps and apathy emerged
as early warning indicators (2-4-hour window), uncoordinated movement represented the
intermediate phase, and the dorsal recumbent position characterized the terminal collapse
stage. These findings demonstrate that behavioral early-warning signals of lethal pesticide
stress can be reliably detected prior to mortality and highlight the potential of explainable
artificial intelligence as a robust decision-support tool for pollinator health monitoring
and pesticide risk assessment.
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INTRODUCTION

Animal pollinators are essential biotic agents that
support the reproductive processes of flowering plants,
thereby sustaining ecosystem functioning and enhancing
agricultural productivity. Among them, bees represent
one of the most widespread and efficient pollinator groups
globally. With more than 20.000 recognized species, bees
contribute to the reproductive success of nearly 90% of
flowering plant species and significantly enhance the yield
of numerous agricultural crops . Approximately one-
third of global food production directly depends on bee-
mediated pollination 2, and the annual economic value
of these pollination services is estimated to exceed 200
billion USD 4. Despite their ecological and economic
importance, the pollination services provided by bees
are facing increasing global threats. A growing body
of evidence indicates a persistent and rapid decline in
pollinator populations, particularly among bee species,
driven by intensified anthropogenic pressures .
Although multiple interacting drivers contribute to these
declines—including habitat loss, climate change, parasites,

and pathogens—widespread pesticide use in agricultural
landscapes has emerged as a pervasive and acute stressor.
Exposure to neurotoxic agrochemicals has been shown to
severely impair bee navigation, foraging behavior, immune
function, and reproductive biology, thereby accelerating
colony collapse and contributing to the decline of wild bee
populations 7.

Pesticide exposure, one of the most significant threats to bee
health, remains insufficiently integrated into comprehensive
environmental ~ management  strategies. Current
regulatory frameworks continue to rely predominantly
on acute, mortality-based endpoints, which hinders the
incorporation of early behavioral warning signals into
risk assessment processes. Yet, exposure to sublethal
pesticide doses can disrupt navigation, social organization,
and colony-level functioning well before mortality or
colony collapse becomes apparent ¥, Michelangeli et al.)
emphasized that such sublethal effects may play a critical,
yet frequently overlooked, role in long-term population
declines and argued for the more systematic integration
of behavioral indicators into ecological risk evaluation.
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However, quantitative and temporally explicit analyses of
behavioral progression under toxic stress remain limited.
Most existing studies focus on static behavioral markers or
isolated reaction patterns, making it difficult to capture the
sequential and emergent neuro-motor disruptions induced
by chemical exposure.

In this context, the early detection of pesticide-induced
ecological impacts not only increases the sensitivity of
environmental risk assessment frameworks but also
substantially improves the timing and effectiveness of
interventions aimed at safeguarding pollinator health.
To overcome the limitations of traditional observational
approaches and systematically analyze early behavioral
signals, data-driven computational methods such as
Artificial Intelligence (AI) and Machine Learning (ML)
have increasingly been integrated into ecotoxicological
research in recent years *'°l. These approaches not only
enhance predictive performance but also possess the
capacity to learn multivariate behavioral patterns and
model their temporal progression under toxic stress !l
However, the inherently “black-box” nature of many ML
algorithms -where decision-making processes are not
directly interpretable- poses challenges for biologically
grounded inference and limits their reliability for
regulatory decision-makers. To address this issue,
Explainable Artificial Intelligence (XAI) techniques,
particularly SHAP (SHapley Additive exPlanations) and
LIME (Local Interpretable Model-agnostic Explanations),
provide model-agnostic and model-specific
interpretability frameworks that elucidate not only what
the model predicts but also why and how . By enabling
transparent attribution of relative feature contributions
to model outcomes, XAI approaches allow pesticide-
related behavioral disruptions to be interpreted in a
mechanistically meaningful way. Thus, XAI establishes
a new methodological axis in ecotoxicology by coupling
predictive accuracy with biological interpretability, which
is critical for the early identification of environmental
stress signals.

This study introduces an innovative modeling framework
that integrates XAI approaches into ecotoxicology to
enable the early detection of behavioral stress responses
induced by pesticide exposure. We analyzed a dataset
comprising 1.506 individual behavioral observations
representing lambda-cyhalothrin exposure across seven
bee species -Andrena vaga, Bombus terrestris, Colletes
cunicularius, Osmia bicornis, Osmia cornuta, Megachile
rotundata, and Apis mellifera- using powerful tree-based
machine learning algorithms, including Random Forest,
XGBoost, and LightGBM. Following mortality risk
classification, model decision pathways were interpreted
using SHAP analyses, which allowed us to explicitly
quantify the directionality and relative importance of

behavioral indicators contributing to elevated mortality
risk. This integrative approach not only achieved high
predictive accuracy but also enabled the characterization
of the behavioral progression underlying pyrethroid-
induced lethality.

MATERIAL AND METHODS
Ethical Statement

This study did not involve any procedures requiring
ethical approval.

Data Source and Experimental Context

This study is based on the re-analysis of an open-
access dataset comprising 1.506 individual behavioral
observations that document the time-resolved effects
of lambda-cyhalothrin exposure on seven bee species:
Andrena vaga, Bombus terrestris, Colletes cunicularius,
Osmia bicornis, Osmia cornuta, Megachile rotundata,
and Apis mellifera. The data were originally collected
by Jiitte et al. under standardized cage test conditions,
with behavioral and mortality assessments recorded at
2, 4, 24, 48, 72, and 96 hours post-exposure 2. Detailed
experimental procedures, including rearing conditions,
exposure protocols, and scoring criteria, are described
comprehensively in the original publication. The dataset
used in this study is publicly available through the
OpenAgrar Repository: https://www.openagrar.de/receive/
openagrar_mods_00092232.

Mortality Rate and Behavioral Variable Encoding

At each observation time point, colony-level mortality
was calculated using the number of dead and surviving
individuals. Specifically, the mortality rate was obtained
by dividing the number of dead individuals by the total
number of individuals observed (dead + alive).

To assess the ability of behavioral indicators to predict
mortality outcomes, this continuous mortality measure
was converted into a binary risk variable based on
toxicological decision thresholds:

- Low Risk: Mortality <30%
- High Risk: Mortality 230%

This threshold was selected to represent biologically
meaningful colony-level stress while still enabling early
detection of behavioral deterioration preceding terminal
mortality, consistent with growing emphasis on sublethal
and functional endpoints in ecotoxicological risk
assessment.

For each individual, seven behavioral indicators reflecting
the neuro-motor progression of pesticide-induced decline
(moribund, cramps, apathy, uncoordinated, restless,
dorsal, and vertigo) were evaluated. Following the scoring



Kafkas Univ Vet Fak Derg

YILDIZ

procedure described by Jiitte et al.'?, these variables were
treated as numerical features in the analysis. In cases where
behavioral scoring captured intensity rather than simple
presence/absence, the quantitative grading was retained
in the modeling process. This allowed the relationship
between behavioral progression and mortality risk to be
evaluated in terms of both occurrence and severity.

Data Preprocessing

Prior to analysis, the dataset was processed to prevent bias
during model training. Missing values in the behavioral
variables were imputed using a median-based approach
that preserves interspecific variance structure. To prevent
differences in measurement scales from disproportionately
influencing model decisions, all explanatory variables were
standardized using z-transformation (mean = 0, standard
deviation = 1). To ensure an objective evaluation of model
performance, the dataset was partitioned into training
(75%) and testing (25%) subsets using a stratified sampling
strategy that maintains both class proportions and
representation across species. This approach was specifically
selected to avoid artificially inflating or diminishing the
model’s discriminative ability in cases where the high-
mortality class contains comparatively fewer observations.

Machine Learning Algorithms and Hyperparameter
Optimization

To evaluate the extent to which behavioral indicators can
predict high mortality risk, three ensemble tree-based
machine learning algorithms were applied. Random
Forest constructs multiple decision trees on bootstrap-
resampled subsets of the training data and aggregates their
predictions through majority voting, thereby reducing
overfitting and improving generalization performance
13, XGBoost employs a gradient boosting framework
that iteratively refines decision trees to minimize
residual errors, and incorporates L1/L2 regularization
and parallel computation, enabling high accuracy and
efficiency in large and imbalanced datasets .. Light GBM
further enhances computational efficiency by converting
continuous variables into histogram bins and applying a
leaf-wise tree growth strategy, which facilitates fast and
stable learning in high-dimensional feature spaces ['*l.

Hyperparameter optimization for each model was
conducted using stratified 5-fold cross-validation to
maximize predictive performance. To maintain sensitivity,
particularly for the high-mortality class, class imbalance
was addressed using algorithm-specific weighing strategies:
class_weight = ‘balanced’ for Random Forest, scale_pos_
weight = (neg/pos) for XGBoost, and class_weight = {0:1,
1:k} for LightGBM. The key hyperparameters used in the
final models are summarized in Table I.

Model Explainability

To examine the direction and magnitude of each
behavioral indicator’s contribution to model decisions,

SHAP analysis was conducted on the XGBoost model. The
SHAP beeswarm plot visualized both the sign (positive
or negative influence) and the relative effect size of each
behavior on mortality risk, thereby revealing a coherent
behavioral progression from early to intermediate and
terminal stages of collapse in accordance with the model’s
internal decision structure.

Performance Evaluation

Multiple evaluation metrics were used to comprehensively
assess model performance. While accuracy indicates the
overall proportion of correctly classified observations,
it is not sufficient on its own when class distributions
are imbalanced. Therefore, performance was primarily
interpreted through Precision, Recall, and F1-score, which
more accurately represent the model’s ability to distinguish
the high-mortality class. Precision reflects the proportion of
individuals predicted as high mortality that were correctly
classified, whereas Recall represents the proportion of actual
high-mortality individuals that were successfully identified
by the model. The Fl-score, calculated as the harmonic
mean of Precision and Recall, is particularly appropriate
for imbalanced datasets. In addition, Support values were
reported to indicate the number of instances in each class,
allowing these metrics to be contextualized relative to class
prevalence. This evaluation strategy prioritizes the reliable
early detection of high mortality risk, rather than solely
maximizing overall accuracy.

Computational Environment and Libraries

All analyses were conducted in Python 3.11 using Google
Colab. Data processing and management were performed
with pandas and NumPy, and visualizations with Matplotlib.
The Random Forest model was implemented using scikit-
learn, while gradient boosting classifiers were trained with
XGBoost and LightGBM. Model explainability was assessed
using the SHAP library to identify the contribution of
behavioral predictors to mortality risk. All code and analytical
steps were executed in a fully reproducible workflow.

RESULTS

Table 2 summarizes the performance metrics of the
classification models developed to predict high mortality
risk based on behavioral response variables. The Random

Table 1. Machine learning models used in this study and their key

hyperparameters

Model Hyperparameters

Random n_estimators=500, max_depth=None, class_

Forest weight="balanced’

XGBoost n_estimators=600, learning_rate=0.05, max_depth=4,
scale_pos_weight=(neg/pos)

LightGBM | num_leaves=31, learning_rate=0.05, class_weight={0:1, 1:k}
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Table 2. Early warning classification performance of Random Forest, s
XGBoost, and Light GBM models based on behavioral predictors Cramps * ' J= - - - -

Model Accurac Precision Recall F1 spathy  mron v oe o [
Y (ngh) (ngh) (ngh) Uncoordinated + & e s =
Mok . W . :n
Lo 0.873 0.538 0.778 0.636 _ I o
Forest Dorsal . . E
XGBoost 0.873 0.545 0.667 0.600 AMiactadl S -
LightGBM 0.762 0.333 0.667 0.444 i |
Restlass l
. . Leva
Forest model achieved the highest overall accuracy 04 02 0D B2 04 DB
. . . SHAP walue {impact on moede! output)

(87.3%), with a recall of 0.778 for the high-mortality class,

indicating strong sensitivity in id ntifyin high-risk cages Fig 2. SHAP beeswarm plot illustrating the contributions of behavioral

cating g s¢ vity N g hig SK cages. variables to the classification of high-mortality cases

XGBoost yielded a similar overall accuracy (87.3%), with
a recall of 0.667 and an Fl-score of 0.600 for the high-
mortality class. In comparison, LightGBM demonstrated
lower performance in distinguishing the high-mortality
class (F1 = 0.444). These results indicate that sublethal
behavioral alterations contain detectable signals associated
with increased mortality risk, supporting the potential of
behavior-based approaches for early warning assessment.

The confusion matrices shown in Fig 1-A,B,C provide a
detailed comparison of the models’ ability to detect the
high-mortality class (y = 1). The Random Forest model
correctly classified 77.8% of high-mortality cases (7 out
of 9), indicating strong sensitivity in identifying high-
risk cages. XGBoost correctly identified 66.7% of high-
mortality cases (6 out of 9). In contrast, LightGBM also
identified 66.7% of high-mortality cases but produced a
higher number of false positives in the low-mortality class.
For the low-mortality class (y = 0), both Random Forest
and XGBoost maintained high classification accuracy (RF:
48/54; XGB: 49/54), whereas LightGBM showed reduced
performance (42/54). These results reflect higher true-
positive detection in the high-mortality class for Random
Forest and XGBoost compared to LightGBM.

SHAP analysis was performed to interpret model
outputs and identify the behavioral patterns associated
with high mortality risk (Fig 2). The SHAP distribution
plots revealed not only the relative importance of
each behavioral variable but also the direction of their
contribution to mortality classification. Higher values of
cramps and apathy were predominantly associated with

Count

A) Random Forest B) XGBoost C) LightGBM

40
Class 0

30

20
Class 1

10

Class 0 Class 0

Actual

Actual
Actual

Class 1 Class 1

Class 0 Class 1 Class 0 Class 1
Predicted Predicted

Class 0 Class 1
Predicted

Fig 1. Confusion matrices for the three classification models: A- Random
Forest, B- XGBoost, and C- LightGBM, illustrating classification
performance for the high-mortality (Class 1) and low-mortality (Class 0)
groups

negative SHAP values, indicating that the increase of
these behaviors contributed to model predictions of high
mortality risk during earlier neuromuscular impairment
stages. In contrast, higher values of uncoordinated and
dorsal were concentrated in the positive SHAP region,
reflecting their stronger association with later-stage loss
of motor coordination and postural control. For the
moribund variable, SHAP contributions appeared across
both positive and negative regions, consistent with its
occurrence during rapidly transitioning terminal phases.
Taken together, the SHAP patterns indicate a sequential
progression of behavioral decline associated with elevated
mortality risk, transitioning from cramps > loss of
coordination > dorsal posturing > moribund state.

D1SCUSSION

Our classification models demonstrated high sensitivity
in detecting impending colony-level mortality based
on sublethal behavioral alterations. Among them, the
Random Forest model achieved the strongest performance,
correctly identifying the majority of high-mortality cases
(recall = 0.778; accuracy = 87.3%). XGBoost showed
comparable overall accuracy (87.3%) with moderately
lower sensitivity (recall = 0.667), while LightGBM
yielded lower discriminative performance for the high-
mortality class (accuracy = 76.2%; F1 = 0.444). Notably,
both Random Forest and XGBoost maintained low
false-negative rates, minimizing the likelihood of failing
to detect cages experiencing severe toxic stress. In the
context of early warning systems, prioritizing sensitivity
over precision is a strategically appropriate trade-off,
as the consequences of overlooking a high-risk colony
are substantially greater than issuing a false alert. These
results suggest that subtle yet consistent behavioral signals
emitted during the early stages of stress can be decoded by
machine learning models to provide actionable early risk
detection. Accordingly, the behavioral patterns captured
in this study may serve as valuable indicators for timely
intervention in managed colonies.
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The SHAP explainability analysis revealed a clear
sequential structure in the behavioral signature
associated with lethal pesticide stress. Higher values of
cramps and apathy were associated with negative SHAP
contributions, indicating their prominence during early
stages of neuromuscular impairment. In contrast, elevated
uncoordinated and dorsal scores contributed positively
to mortality predictions, reflecting later-stage collapse
characterized by loss of motor coordination and postural
control. The moribund behavior showed mixed SHAP
contributions across both positive and negative regions,
consistent with its occurrence during rapidly transitioning
terminal phases. Together, these patterns indicate a
cascading progression of neuromuscular decline: early
muscle spasms and reduced activity > loss of coordination
- failure to maintain dorsal posture > terminal moribund
state. This staged behavioral collapse aligns with
known acute neurotoxic responses reported in bees and
bumblebees, where pesticide exposure initially disrupts
coordination and elevates agitation, followed by reduced
mobility and postural failure under sustained stress ' Our
machine-learning-derived behavioral signature therefore
reflects established toxicodynamic processes, but presents
them within a unified, temporally ordered framework.
The identification of this structured progression is a novel
contribution, suggesting that monitoring the sequence
of behavioral anomalies may provide richer diagnostic
insight than evaluating behaviors as isolated symptoms.
Future work could validate this cascade across additional
species and stressors, yet the present findings already
advance our understanding of how pesticide-induced
neurotoxicity unfolds behaviorally in pollinator systems.

From an ecological perspective, these findings are
particularly significant. Insect pollinators function as
keystone species, supporting approximately 75% of global
crops and 88% of wild flowering plant species ['”l. Declines
in bee populations therefore pose direct risks to global
food security and ecosystem resilience. Recent research
has identified contemporary pesticide use -especially
neonicotinoids and pyrethroids- as a major driver of these
declines '®l. For example, Guzman et al. reported that
increasing neonicotinoid and pyrethroid use across the
United States was associated with substantial reductions
in wild bee occupancy, exceeding 40% in some groups
171, Similarly, Dicks et al. '8! emphasized that pollinator
conservation is essential for ecosystem stability and
human well-being, noting that pesticides contribute to
pollinator declines not only via acute toxicity but also
through indirect sublethal effects. Within this context, our
behavioral prediction framework has clear conservation
relevance: it enables the detection of lethal pesticide
impacts before colony collapse becomes visible. Such
early warning capability may provide beekeepers and

ecologists with a practical decision window in which to
relocate colonies, adjust pesticide application timing, or
implement mitigation measures to preserve pollination
services. These results therefore reinforce the growing
scientific consensus that sublethal behavioral indicators
should be integrated into pollinator health monitoring
systems. As Ulrich et al.l'”! argue, social insects such as
bees are keystone species in terrestrial ecosystems, and
Al-enabled behavioral monitoring holds considerable
potential for ecological protection and restoration. By
providing a measurable link between environmental
stressors and colony outcomes, our findings contribute to
this emerging direction and support proactive pollinator
conservation strategies.

From a practical standpoint, these findings highlight
pathways for implementing behavior-based monitoring in
pollinator health assessment. Ongoing work in Precision
Apiculture already leverages non-invasive sensing and
machine learning to track colony conditions. For example,
acoustic monitoring systems can automatically classify
hive states !, and computer vision platforms have been
developed to continuously record behavioral activity
over extended periods .. Likewise, Hossain and Baer
introduced an “Electronic Bee Veterinarian” framework
that uses temperature sensors and predictive modeling
to alert beekeepers to colony stress -whether thermal,
pathological, or pesticide-related- several days in advance
(21, The behavior scoring approach developed in this study
could be integrated into such frameworks. A practical
monitoring protocol could combine internal or external
hive cameras with computer vision pipelines to quantify
key behavioral metrics such as muscle spasms, mobility
patterns, and postural stability. These quantified metrics
could then be supplied to the machine learning classifier to
generate early risk alerts. Such alerts may prompt targeted
inspections or mitigation measures, including modifying
pesticide application, providing supplemental nutrition,
or relocating colonies to safer foraging environments.
Importantly, integrating multiple data streams -such as
temperature, acoustic activity, and behavioral indicators-
will likely yield the most robust early warning systems.

Although this study focused on a pyrethroid insecticide,
which is among the most widely used neurotoxic
compounds in agricultural systems, the proposed
behavior-based early warning framework is not inherently
chemical-specific. While behavioral trajectories may vary
across pesticides with different modes of action, core
manifestations of neurotoxic stress such as impaired
coordination, postural instability, and reduced activity are
expected to represent convergent functional endpoints,
supporting the broader applicability of the approach.

In summary, this study demonstrates that machine
learning can transform subtle behavioral disruptions into
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interpretable and actionable indicators of lethal stress.
This advances pollinator monitoring beyond passive
observation and toward a new generation of digital,
responsive, and preventative colony health management.
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