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Abstract

Climate change is profoundly transforming animal health by intensifying vector-borne
diseases (VBD) in livestock. Rising temperatures, shifting rainfall, and extreme weather events
have expanded the geographic range and seasonality of vectors such as ticks, mosquitoes, and
biting flies. This has led to increased incidence, emergence, and re-emergence of diseases like
bluetongue, Rift Valley fever, trypanosomiasis, and tick-borne fevers. These infections reduce
meat, milk, and reproductive performance, while also posing significant public health and
socioeconomic threats, especially for pastoralists, smallholder farmers, and rural women.
VBDs exacerbate poverty and gender inequities and heighten human exposure to zoonotic
pathogens with epidemic potential. In response, climate-resilient agricultural practices,
vector control, enhanced surveillance, and One Health-based strategies are being promoted
to strengthen adaptive capacity. However, critical gaps persist, including weak integrated data
systems, limited predictive modeling, unaffordable diagnostics and vaccines for neglected
diseases, and poor understanding of community-level adaptive capacities. Addressing these
challenges requires coordinated global action, investment in interdisciplinary research, and
policies that enhance resilience and equity in animal health systems.
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INTRODUCTION

Climate change is increasingly recognized as one of the
greatest global threats of the 21% century, with extensive
implications for natural ecosystems, biodiversity, human
health, and socioeconomic stability 2. Driven primarily
by human-induced greenhouse gas (GHG) emissions,
most notably carbon dioxide (CO,), methane (CH,), and
nitrous oxide (N,O), climate change is manifested through
rising global temperatures, erratic precipitation, receding
glaciers, sea-level rise, and an increased frequency of
extreme weather events such as droughts, floods, and
heatwaves 1**l. These environmental shifts have severe and
interrelated effects on ecosystems, including agricultural
and livestock production systems. Crop and livestock
agriculture, which is extremely sensitive to climatic
variations, faces heightened threats to productivity, animal
health, and welfare. Of particular concern is the increasing
prevalence and spread of infectious livestock diseases,
especially vector-borne diseases (VBDs) transmitted by
ticks, mosquitoes, and flies ©°\.

Vector-borne animal diseases are a significant threat
to both animal and human health worldwide. Diseases
such as bluetongue, African swine fever, Rift Valley

fever, tick-borne encephalitis, and trypanosomiasis cause
major economic losses due to animal morbidity and
mortality, decreased productivity, veterinary costs, and
trade restrictions . Their impact is particularly severe
in low- and middle-income countries, where livestock are
central to livelihoods. Many of these diseases are zoonotic,
posing risks to both public and veterinary health . The
distribution and transmission of VBDs are strongly
influenced by ecological and environmental factors such
as temperature, humidity, host availability, and suitable
vector habitats. Climate change alters these conditions,
creating environments more favorable for the survival and
dissemination of vectors and pathogens .

The relationship between climate change and VBDs is
complex and multifactorial. Rising temperatures accelerate
pathogen development within insect vectors (extrinsic
incubation), enhance vector survival, and expand their
geographical range into previously unsuitable areas at
higher latitudes and altitudes. Altered precipitation and
humidity patterns can create new breeding grounds for
vectors such as mosquitoes and midges, while droughts
and heatwaves may force livestock and wildlife into closer
contact with vectors, increasing transmission risks [\

@ OO ‘ ‘ This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)



https://orcid.org/0000-0003-4966-0264

2

Climate Change and Vector-Borne Diseases in Livestock

Kafkas Univ Vet Fak Derg

These climatic shifts disrupt traditional epidemiological
patterns and drive the emergence or re-emergence of
infectious diseases. This review, therefore, highlights the
critical interrelationship between climate change and
animal vector-borne diseases, emphasizing their impacts
on livestock production and rural livelihoods.

Climate Change and Its Impacts on Livestock Systems

Global temperatures have risen by about 1.2°C since pre-
industrial times, and further warming is expected. Many
livestock-rearing regions are projected to experience
the highest temperature increases, exposing animals to
greater thermal loads for longer periods. This will affect
their performance, reproduction, and survival. Heat
stress occurs when animals cannot dissipate body heat
effectively. Species with dense coats or poor sweating
ability, like cattle, are especially vulnerable ['l. Changes in
precipitation and more frequent extreme weather events,
such as storms, hurricanes, and wildfires, further strain
livestock systems. These events can cause high animal
losses, damage infrastructure and feed, and disrupt
transport and veterinary services. For example, the 2019-
2020 Australian bushfires killed or displaced around
100.000 livestock, causing major economic losses. The
increasing severity and unpredictability of these events
demand more resilient management strategies '\

Heat stress in cattle, sheep, and goats leads to lower feed
intake and altered metabolism, reducing milk yield and
weight gain. Dairy cows may lose up to 40% of milk
production, with decreased fat and protein content. In
poultry, high temperatures reduce egg production and
quality and increase mortality, particularly in broilers >4,
Behaviorally, animals move less, seek shade, and drink
more water, but reduced grazing or feeding time further
lowers productivity. In extensive systems, concentrating
in cooler areas can lead to overgrazing and pasture
degradation "\

This literature review is novel in the sense that it brings
an integrative and comprehensive outlook that was not
available before. Several reviews have considered livestock
diseases due to vectors or climate change effects on animals
in general, but they did not include this global picture. The
current review includes areas not often mentioned where
the risk of diseases shifted by climate change is increasing.
It is not limited to one continent or country but rather
presents a compiled view that encompasses a number of
different regions worldwide, including Africa, Asia, the
Middle East, Europe, and Latin America. In addition,
it integrates mechanistic knowledge on host immune
response, vector competence, and pathogen dynamics
with quantitative modeling methods such as SIR, agent-
based, and remote sensing-assisted models linking climate
to key epidemiological metrics like Ro, degree-days,

and entomological inoculation rates. The authors also
mention emerging zoonotic and livestock pathogens, for
instance, CCHF, leishmaniasis, and Japanese encephalitis,
providing explicit practical recommendations for the risk
communication and mitigation strategies. By merging
mechanistic, quantitative, and applied perspectives into
one framework, the review has addressed a critical gap
between empirical observations, predictive modeling, and
actionable guidance, and it provides a holistic and globally
relevant synthesis that is beyond the scope of previous
reviews.

Changes in Feed and Water Availability

Feed and water are among the most critical inputs in
animal production, both highly sensitive to climatic
fluctuations. Temperature and rainfall affect the quantity
and quality of forage and grains consumed by livestock.
In grazing systems, pasture productivity and composition
respond strongly to temperature and moisture. While
moderate warming may initially boost plant growth in
some temperate zones, excessive heat and water stress
reduce biomass and nutritional quality '*”). Prolonged
drought in arid and semi-arid areas lowers native grass
and shrub canopies, forcing pastoralists to adopt costly
supplementary feeding. Elevated CO, may stimulate
plant growth but reduce protein content and digestibility,
decreasing feed quality "¥l. Animals on low-quality diets
grow slower, produce less milk, and are more disease-
prone "I, Intensive farming systems dependent on maize
and soybeans are also vulnerable to climate-induced
fluctuations in crop yields and supply chains 2°2!,

Extreme weather, shifting agro-climatic zones, and
competition between human food and animal feed
crops can reduce feed affordability and availability,
forcing producers to limit herd sizes or rations (2%,
Water availability is similarly threatened. Climate change
alters hydrological cycles, impacting both surface and
groundwater Y. Drought limits water for drinking,
cooling, and feed production, while floods increase
contamination risks. Inadequate or unsafe water
leads to dehydration, reduced feed intake, impaired
thermoregulation, and disease [**). Competition for scarce
water between agriculture, industry, and households often
deprioritizes livestock, especially in developing countries
with weak storage and distribution systems *¢. Climate-
resilient water strategies, including rainwater harvesting,
efficient irrigation, and improved watering systems, are
essential 7],

Geographical Alterations in Livestock-Friendly
Regions

Climate change is expected to alter the geographical range
of livestock production systems. Shifts in temperature
and precipitation will determine which regions remain
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or become suitable for rearing specific animal species %,
Warmer conditions in previously cold regions may extend
grazing periods and reduce housing costs, making these
areas more favorable for livestock. However, these benefits
may be offset by emerging challenges such as pests,
diseases, and unsuitable soils .. In contrast, excessive
heat and water scarcity in tropical and subtropical zones
may reduce system viability, prompting herd movement
or replacement with more heat-tolerant breeds .

Pastoralist and nomadic communities are particularly
vulnerable, as altered vegetation cycles, depleted water
sources, and resource conflicts disrupt traditional
migration routes. This can lead to grazing system collapse
and higher livestock mortality **.. Expanding vector ranges
add further complexity; for example, bluetongue virus has
moved into Northern Europe due to the northward spread
of Culicoides midges, and ticks and tsetse flies are reaching
higher elevations and temperate zones, increasing disease
risk. Adapting to these shifts requires improved climate and
disease forecasting, climate-resilient breeds, diversified
systems, and strategic land-use planning *!l. Institutional
support through mobility-enabling policies, secure land
rights, and veterinary infrastructure is essential to help
farmers adjust to new climatic realities *?).

Vector-Borne Animal Diseases

Vector-borne animal diseases (VBDs) are infections
transmitted to livestock and sometimes humans by
arthropod vectors, including insects (mosquitoes, flies,
midges) and arachnids (ticks, mites). Their causative
agents include viruses, bacteria, protozoa, and helminths.
VBDs involve a tripartite system of host, pathogen, and
vector, with many pathogens requiring development or
multiplication within the vector before infecting the next
host . Examples include viral (bluetongue), bacterial
(anaplasmosis), protozoan (trypanosomiasis), mosquito-
borne (Rift Valley fever), tick-borne (babesiosis), fly-
borne (trypanosomiasis), and midge-borne (bluetongue)
diseases 1. Some are strictly animal diseases, while others
are zoonotic (e.g., Rift Valley fever) . Understanding
their classification and transmission dynamics is critical
for surveillance and control, especially under a warming
climate that enhances vector survival and spread °..

Bluetongue is a viral disease of ruminants, particularly
sheep, caused by Bluetongue virus (BTV) of the Orbivirus
genus (Reoviridae). It is transmitted by Culicoides midges,
notably C. imicola and C. obsoletus. Clinical signs include
fever, mucosal inflammation, facial and tongue swelling,
lameness, and sometimes death. Cattle often act as
reservoirs, harboring subclinical infections that sustain
viral circulation .. Formerly confined to sub-Saharan
Africa and Asia, bluetongue has spread to Europe due
to climate-driven vector expansion, with outbreaks in

Germany, the Netherlands, and the UK 7). The 2006-2008
Northern European outbreaks were linked to increased
temperature and humidity. Economic impacts include
trade restrictions, mortality, reduced productivity, and
costs of vaccination and vector control ¥,

The changes in temperature and precipitation across South
and Southeast Asia have affected the outbreaks of diseases
caused by mosquitoes and ticks that threaten livestock
such as cattle, buffalo, goats, and sheep, and have even
worsened them. Four major zoonotic diseases associated
with livestock production, i.e., hemorrhagic septicemia,
lumpy skin disease (LSD), Japanese encephalitis (JE), and
anaplasmosis, have been detected with seasonal variability
and extreme heat in India, Pakistan, Bangladesh, and
Nepal. The Aedes and Culex mosquitoes have migrated
north due to the warm winters, thus exposing livestock
more to the JE virus and other arboviruses. Climate
change is also the reason for the increased Harshamma
ticks in Pakistan and Iran, for which animals’ CCHF
disease incidence is rising as well as the humans’ .

In the Middle East, the sequence of droughts and then
sudden heavy rains has become more common and
creates the perfect environment for the vectors of the
Aedes, Culicoides, and Phlebotomus types to breed. One
of the consequences of this is the re-emergence of Rift
Valley fever (RVF) outbreaks in Saudi Arabia and Yemen,
where heavy rainfall, often linked to warm ocean currents
and EI Nifno-like patterns, leads to the rise in mosquito
numbers, causing large-scale infections in sheep, goats,
and camels. The heat stress caused by these conditions
also makes the livestock more susceptible to infection
with Theileria annulata, which Hyalomma ticks transmit,
and consequently, there is an increase in cases of tropical
theileriosis, mainly in cattle ).

Latin America provides proof of the similar climate-
induced changes in vector ecology. Higher temperatures
and deforestation-related microclimate changes have
extended the range of sandfly species in Brazil, Colombia,
and Venezuela, thereby facilitating the transmission
of leishmaniasis in cattle and horses. In Brazil and
Argentina, the occurrence of Bluetongue virus (BTV)
outbreaks has been more and more connected to the
changes in precipitation and humidity, which in turn,
support Culicoides midge activity. Moreover, the climate
fluctuations in Central America have led to the movement
of Rhipicephalus microplus ticks to new regions, thereby
increasing the incidence of cattle diseases such as
babesiosis and anaplasmosis. The warmer and moister
conditions have also helped Aedes vectors to invade the
mountainous regions of Mexico and Peru, which is, in
turn, raising the alarm about the possible reappearance of
arboviruses that would affect humans and livestock again
in the future (Fig. 1) .
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Rift Valley fever (RVF) is a viral zoonotic disease caused
by the Rift Valley fever virus (RVFV), which belongs
to the Phlebovirus genus of the Bunyaviridae family. It
affects livestock such as sheep, goats, cattle, and camels
and is primarily transmitted by mosquitoes, with Aedes
and Culex species being the most common vectors .
Outbreaks of RVF are commonly associated with periods
of intense rainfall and flooding, which create ideal breeding
conditions for mosquitoes. The disease is characterized in
animals by high rates of abortion and mortality, particularly
in juveniles. In humans, RVF can cause influenza-like
symptoms, hemorrhagic fever, encephalitis, or death.

The 2006-2007 East African RVF outbreak was triggered
by El Nifio-related flooding, demonstrating the role
of climate anomalies in disease emergence. Infected
livestock act as amplifying hosts, increasing spillover
risk during outbreaks. Because of its significant public
health implications and severe impact on livestock
reproduction and survival, RVF 1is considered an
important transboundary animal disease . Control
measures include vaccination (where available), mosquito
eradication, and movement control !

Trypanosomiasis in livestock, also known as Nagana,
is a protozoan disease caused by Trypanosoma species,
particularly T. congolense, T. vivax, and T. brucei.
Transmission occurs through tsetse flies (Glossina spp.),
which are primarily distributed in sub-Saharan Africa.
Clinical signs include fever, weakness, weight loss,
anemia, abortion, and death. Chronic infections result in
reduced productivity, infertility, and loss of draught power
in cattle and other livestock 1“2l The disease affects nearly
10 million km® of Africa and threatens more than 50
million cattle. Its economic impact exceeds US$4.5 billion
annually . Climate change is expected to shift tsetse fly
habitats, potentially expanding disease transmission to
new areas. Rising temperatures and vegetation changes
can modify fly density and infectivity, necessitating new
surveillance and vector control strategies ..

Ticks are among the most significant disease vectors
affecting animals globally. Tick-borne diseases (TBDs)

include several serious infections, such as Babesiosis,
caused by Babesia spp., mainly B. bigemina and B. bovis,
transmitted by Rhipicephalus ticks. It causes fever, anemia,
hemoglobinuria (“redwater”), and high mortality in cattle
44451 Anaplasmosis, caused by Anaplasma marginale,
is transmltted by ticks, leading to fever, jaundice, and
emaciation in cattle. Theileriosis, caused by Theileria spp.,
e.g., T. parva, results in East Coast fever in cattle in eastern
Africa.

Ticks thrive in warm, humid environments, and
climate change is expanding their range and increasing
their activity periods. Prolonged survival, increased
reproduction, and longer seasonal activity raise tick
burdens and disease risks. TBDs reduce productivity,
milk yield, and fertility and cause major economic losses
through animal deaths, reduced draught power, and
treatment costs. Acaricide resistance further complicates
control . Ticks are arachnids with four life stages: egg,
larva, nymph, and adult. Most hard ticks (Ixodidae) are
three-host ticks, feeding on different hosts at each stage and
molting in the environment between feedings. Pathogens
are transmitted primarily through saliva during blood
feeding, both transstadially (larva -» nymph - adult) and
transovarially (adult > egg), enabling long-term disease
persistence 7. Climate change extends tick seasons and
permits their spread into cooler, higher-altitude regions.
For example, Ixodes Ricinus, a vector of Anaplasma and
Borrelia, has expanded northward and upward in Europe
due to increased temperatures 2.

Tsetse flies are large, blood-feeding insects restricted
to sub-Saharan Africa. They transmit Trypanosoma
parasites to both animals and humans. Tsetse flies are
viviparous, giving birth to live larvae that pupate in the
soil. Transmission occurs during blood feeding, as the
parasite undergoes development in the fly’s midgut and
salivary glands. The cycle takes approximately 20-30 days,
and infection risk depends on temperature, humidity,
and host availability 8. Climate change alters tsetse
habitats, especially in riverine and savannah ecosystems.
Temperatures exceeding 32°C may reduce fly survival and
fecundity, contracting their range, while cooler areas may
become more suitable ).

Mosquitoes, including Aedes, Culex, and Anopheles
species, transmit numerous viral and parasitic diseases.
Their life cycle consists of egg, larva, pupa, and adult stages,
with larval and pupal development occurring in water.
Pathogens typically require an extrinsic incubation period
within the mosquito before becoming transmissible, a
process accelerated by higher temperatures. Increased
rainfall and flooding create more breeding sites, while
warming extends mosquito activity and range. Outbreaks
of RVE, for example, are linked to breeding of Aedes and
Culex mosquitoes in rainwater pools ©*%.
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Midges (Culicoides spp.) are small biting flies that transmit
bluetongue virus and Schmallenberg virus in ruminants.
Their life cycle (egg-larva-pupa-adult) depends on moist
soil or dung for larval development. Adults are active at
dawn and dusk and transmit pathogens biologically after
viral multiplication in the insect. Higher temperatures
accelerate viral replication and shorten incubation
periods, increasing vector competence. Climate
change has facilitated Culicoides survival in new areas,
including temperate Europe. Warmer winters promote
the overwintering of midges and viruses, allowing for
year-round transmission cycles that were previously

constrained ! (Table 1).

Climate Change-Induced Alterations In Disease
Dynamics

Expansion of vector habitats and breeding grounds

One of the most important mechanisms through which
climate change influences disease dynamics is the widening
of ecological niches for vectors. Temperature and humidity
affect the distribution, reproductive performance, and
survival of vectors such as mosquitoes, ticks, midges, and
flies. As these parameters shift, so do suitable habitats for
vector development *°). Warmer temperatures accelerate
the development of ectothermic vectors, allowing them to
reproduce faster and expand their geographic ranges. For

Table 1. Factors about VBD and their prevention strategies

Factor Causes Mitigation Strategies References
Biodiversity Loss Climate change, habitat destruction Ecosystem-based adaptation (EbA), protected areas o
GHG Emissions CO,, CHy4, N,O from livestock & farming Renewable energy, emission regulation 3l
Vector-Borne Diseases (VBDs) Climate shifts, globalization One Health, vector surveillance Bl
Emerging VBDs in Europe Habitat shifts, vector importation Cross-border One Health strategies i
Extreme Weather Events Increased frequency & severity Disaster preparedness [
Australia Risk Landscape Climate threats, zoonoses Strategic preparedness iz
Heat Stress in Cattle High temperature, humidity Cooling, shade, hydration ()
Tibetan Pasture Degradation Overgrazing, warming Sustainable rangeland management (sl
Low Pasture Diversity Overgrazing, variable rainfall Diversified pasture species t1e]
Methane from Ruminants Poor forage quality Methane-mitigating forages [
Milk Quality Issues (Kenya) Poor hygiene, handling Farmer training, hygiene improvements 1
Urban VBDs (Africa) Waterlogging, sanitation failure Vector control, sanitation upgrades (201
Poultry & Security Global price shocks Poultry resilience strategies 24)
Rural Water Delivery Poor infrastructure Community governance (23]
Water Allocation Imbalance Ecological undervaluation Integrated valuation 2
Global Livestock Trends Climate pressure, population growth Climate-smart livestock (28)
Silvopasture Integration Monoculture inefficiency Agroforestry integration 9]
Environmental Impacts on . -

vl Heat stress, pollution Green, adaptive systems 1301
VBDs in Developing Countries Climate stress, weak infrastructure Disease mapping, education 321
VBDs in Afghanistan Conflict, warming Regional vector control (2]
Cattle as VBD Risk Vector proximity Spatial management (3]
Asian Vector Ecology Regional vector diversity Localized control plans 34]
Wildlife Trypanosomiasis Wildlife-livestock interface Interface regulation 341
Bluetongue Virus Midge vectors, climate sensitivity Vaccination, vector control (3¢l
Climate & VBD Trends Vector behavior, pathogen cycles Regional vector plans 157)
VBDs in the UK Changing vector habitats Monitoring, early warning (28]
Rift Valley Fever (RVF) Mosquito vectors, flooding Vaccines, vector control 139]
RVF Epidemiology Climate, animal movement Forecasting, vaccination e
Trypanosomosis (Africa) Tsetse exposure, grazing Education, drug delivery 142
Surveillance in Zambia Remote settings Mobile vet units =
Tick-Borne Diseases Climate effects on ticks Repellents, resistant breeds 144)




6

Climate Change and Vector-Borne Diseases in Livestock Kafkas Univ Vet Fak Derg
Table 1. Continue

Factor Causes Mitigation Strategies References
Global Climate & Disease Vector range expansion Climate-smart health L4l
Ticks in Pets Pet mobility, tick spread Owner education, tick control 471
Mosquito Biology Water habitats, breeding Source elimination (50
Livestock Diseases Poor vet capacity Capacity building, One Health (=21
Climate-VBD-Conflict Link Fragile ecosystems, migration Conflict-sensitive climate adaptation (53]
Transboundary Diseases Trade, migration Regional surveillance (541
Zoonoses in SE Asia Deforestation, bushmeat One Health coordination 551
Animal Health Actors (Africa) Fragmented roles Intervention mapping (56l
Veterinary Data Gaps Fragmented datasets Integrated data systems L2
RVF Modelling Climate-based forecasting Climate-sensitive models (58]
VBD Resilience in Europe Low preparedness Knowledge sharing (591

example, populations of Culicoides midges that transmit
bluetongue virus have become established in northern
Europe, where they previously could not overwinter I,
Similarly, Aedes mosquitoes, vectors of Rift Valley fever
(RVF), are now able to breed in higher-altitude and
latitude regions of East and North Africa [,

Changes in precipitation patterns play a dual role in
vector ecology. In some regions, excessive rainfall and
flooding create stagnant water bodies ideal for mosquito
breeding. In others, drought concentrates animals and
vectors around limited water sources, increasing contact
rates and transmission potential. Glossina spp. (tsetse
flies), for instance, depend on humid environments for
reproduction and survival; rising humidity in parts of
southern and central Africa has increased their breeding
areas 1],

Land cover and vegetation changes driven by both climate
and human adaptation also affect vector ecology. Bush
encroachment linked to desertification may enhance tick
survival, while deforestation can expose livestock to new
vector populations and associated diseases. Such habitat
expansions increase contact between vectors, livestock, and
wildlife reservoirs, promoting cross-species transmission
and raising the risk of zoonotic spillover events (¢4

Emerging and Re-emerging Diseases Under Climate
Stress

Climate change has triggered the emergence of new
vector-borne diseases and the re-emergence of previously
controlled infections through ecological disruption,
altered vector behavior, and increased contact among
livestock, humans, and wildlife. Emerging diseases often
arise when pathogens adapt to new vectors or hosts. For
example, Schmallenberg virus, a novel orthobunyavirus
detected in 2011, appeared in Northern Europe and
was transmitted by Culicoides midges, the same vectors

responsible for bluetongue virus. Although the direct role
of climate change remains debated, rising temperatures
likely enabled vector persistence and virus spread ©¢ >,
Re-emergence occurs when climatic variability reignites
transmission cycles of controlled diseases. Rift Valley
fever, once localized in Fastern Africa, has resurfaced
multiple times over recent decades, often following El
Nino-driven flooding, causing major livestock losses,
trade disruptions, and human infections .

Climate stress also weakens animal immunity, increasing
susceptibility to co-infections. Heat-stressed cattle, for
instance, are more vulnerable to tick-borne pathogens
such as Anaplasma and Babesia in areas with prolonged
tick activity 2%, Additionally, climate change interacts
with globalization, urbanization, and deforestation to
create ideal conditions for novel vector-pathogen-host
dynamics. The expansion of livestock into wild habitats
and climate-driven human migration further elevate
outbreak risks. This underscores the urgent need for a
One Health approach integrating human, animal, and
environmental health perspectives to strengthen vector-
borne disease surveillance, prevention, and control [

(Fig. 2).
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Effects on Animal Health and Production
Higher Morbidity and Mortality Among Livestock

Climate change amplifies disease risks through increased
heat stress and environmental hazards, leading to higher
livestock morbidity and mortality. Prolonged exposure
to high ambient temperatures and humidity elevates
respiration rate, body temperature, and reduces feed
intake, compromising immune function and increasing
vulnerability to infections [’). Major vector-borne diseases
such as trypanosomiasis, anaplasmosis, babesiosis, and
Rift Valley fever (RVF) remain significant causes of
livestock deaths. African trypanosomiasis alone Kkills
about 3 million cattle annually. Mortality is highest in
young or naive herds and is exacerbated by concurrent
climate events like drought or flooding, which limit access
to feed and water. These shocks reduce herd size, alter
genetic selection, and undermine long-term productivity
and resilience %,

Decreased Milk, Meat, and Reproductive Performance

Thermal stress depresses milk yield by lowering feed
intake, impairing metabolism, and damaging mammary
function, with reductions of up to 40% reported during
prolonged heat waves [©. Vector-borne infections
compound this by causing fever, anemia, and systemic
inflammation, leading to sharp declines in both milk
quantity and quality 7. Meat-producing animals such as
beef cattle, sheep, goats, and poultry experience reduced
growth rates and carcass weights due to combined heat
stress and disease pressures 7272,

Climate stressors also impair reproductive efficiency. In
females, heat and disease disrupt estrous cycles, ovarian
activity, and pregnancy maintenance, causing abortions,
stillbirths, and low offspring survival. In males, semen
quality and libido decline at high temperatures. RVF
outbreaks, for example, are linked to mass abortions
in ruminants, while trypanosomiasis delays puberty,
lowers fertility, and compromises fetal development.
These reproductive disruptions prolong calving intervals,
reduce herd expansion, and threaten profitability and
sustainability 3.

Costs of Disease Control and Veterinary Services

Disease prevention and control impose substantial
financial burdens on livestock producers and governments.
Preventive measures, including vaccination, use of
antiparasitic drugs, insecticides, acaricides, and housing
improvements, require significant investment. For
example, large-scale bluetongue vaccination programs in
Europe cost tens of millions of euros annually per country.
Similarly, trypanosomiasis control in Africa relies on
trypanocidal drugs, which are expensive and increasingly
threatened by drug resistance due to overuse and

misuse 7, Tick control necessitates regular acaricide
applications; however, rising product costs, frequent
treatments, and resistance development make long-term
control financially challenging.

Once the disease occurs, veterinary consultations,
diagnosis, and treatment further escalate costs. In rural
and remote regions, limited access to veterinary services
often leads to delayed or inappropriate treatment. In
tick-endemic areas, drugs such as buparvaquone for
theileriosis are essential but expensive and frequently in
short supply . Outbreak control requires government
interventions, including movement restrictions,
quarantines, and mass vaccination campaigns, which
add logistical and financial burdens to both producers
and public health systems .. The economic impact is
compounded when outbreaks disrupt domestic and
international livestock trade. For instance, detection of
Rift Valley fever can halt the export of meat, milk, and
live animals, affect national economies, and undermine
the livelihoods of smallholder farmers "¢,

Economic and Livelihood Impacts

Smallholder farmers are highly vulnerable to climate-
driven vector-borne disease (VBD) shocks due to
limited access to adaptive technologies, weak veterinary
infrastructure, and dependence on a few animals for
subsistence. The loss of even one cow or ox can push a
household into poverty by eliminating its primary source
of milk, draught power, or income "”. Repeated disease
outbreaks and climatic stressors reduce herd sizes, force
distress livestock sales, and diminish household access
to animal-source foods, undermining both income and
nutrition security. Women, who play key roles in small-
scale livestock production in many developing countries,
are disproportionately affected. Livestock loss limits their
economic empowerment, reduces their ability to invest
in household welfare, and increases their labor burden in
sourcing feed and water 7%l.

Commercial farms, though better resourced, also face
significant risks. VBD outbreaks can cause large-scale
production losses, reputational damage, and increased
spending on biosecurity, veterinary care, and insurance.
Intensive, high-density farming systems facilitate rapid
disease spread, while heat stress requires costly cooling
and ventilation. Extreme disease or heat events can wipe
out major investments in infrastructure, feed, and genetics.
Livestock insurance programs, often accessible only to
large farms, remain out of reach for most smallholders.
Climate-resilient risk management measures such as
index-based insurance, microcredit, and public-private
partnerships in animal health are crucial to protect both
small and commercial producers from climate-related
shocks ! (Fig. 3).
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Zoonotic Potential of Vector-Borne Diseases

Many vector-borne animal diseases carry zoonotic
potential, i.e., the potential to be transmitted from animals
to humans with grave consequences to human health.
Climate change enhances the risk of such transmissions
through the modification of the vectors’ distribution and
the bringing together of populations of humans, livestock,
and wildlife **. Rift Valley fever (RVF), which is among the
most recognized zoonotic VBDs, infects both humans and
animals and causes flu-like symptoms that can progress into
hemorrhagic fever, encephalitis, or blindness *). Abnormal
rain and flooding, which aid in the breeding of mosquitoes
and amplification of the virus among livestock, trigger
outbreaks of RVE Infections in humans usually arise from
direct contact with infected blood, milk, or meat, especially
among farmers, butchers, and veterinarians .

In East Africa, the 2006-2007 RVF outbreak led to more than
300 human fatalities and huge losses of livestock, illustrating the
lethal nexus between animal and human health under climate
stress %3, Likewise, West Nile virus, another temperature-
sensitive arbovirus, is transmitted by mosquitoes and has
had rising cases in Europe and North America with warming
temperatures extending vector ranges **. Trypanosomiasis,
while mainly its consequence for livestock (as Nagana), also
manifests in human form as human African trypanosomiasis
(HAT or sleeping sickness). Climate-induced shifts in tsetse fly
distribution may potentially raise the risk of HAT in hitherto
non-endemic areas 2.

Zoonotic VBD outbreaks impose significant burdens on
frequently underfunded public health infrastructures,
particularly in the developing world. Zoonotic disease
outbreaks often overwhelm hospital and clinic resources
with patients presenting with a broad array of clinical signs
and symptoms, frequently without clear diagnostic tests or
treatments "), Integrated surveillance systems that monitor
diseases across the animal-human interface also do not exist.
Veterinary and human health services in most countries
are running independently, downplaying the capacity to
detect outbreaks early and respond promptly . It hinders
containment, as this does not enable diseases to be contained
geographically and between species * (Fig. 4).
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Fig 4. Climate-induced changes in vector-host-pathogen interactions at
the ecosystem level

Surveillance, Adaptation, and Mitigation Measures

Early surveillance and detection are the pillars of
successful VBD control. In a time when the environment
is under threat and disease dynamics are becoming
increasingly erratic, active disease surveillance systems
offer the opportunity for real-time intervention, reduce
the severity of outbreaks, and safeguard both animal and
human health **l. Integrated surveillance entails frequent
gathering, analysis, and interpretation of data relating
to the occurrence of disease in vectors and animals.
Successful surveillance systems track clinical expression
in animals along with environmental factors like
temperature, vegetation, and rainfall, factors that under
usual circumstances would mirror vector multiplication.
These are to be supplemented with field-level data
collection by veterinary officers, extension workers, and
community-based animal health workers for responding
and accuracy ™. Early warning systems (EWS) use
climate models and epidemiological data to forecast
the occurrence of disease weeks or months in advance.
For example, El Nifio events have been associated with
elevated risk for RVF in East Africa based on improved
breeding conditions for mosquitoes. Rainfall anomaly
prediction and vegetation index models have aided nations
in pre-emptive vaccination and vector control measures.
Challenges remain, however, in translating forecasts into
action, particularly where there is poor governance or
poor communication infrastructure. Getting more linkage
between prediction and policy response is required for
effective use of early warning 7).

When climate change makes vectors expand their range
and season of activity, maintaining their populations
under control and at bay from disease transmission
by vaccination is a high priority. Vector control is a
chemical and biological intervention for reducing the
vector population or preventing vector-host contact.
The primary methods are treated livestock and shelters:
Spraying acaricides or insecticides on animal hide,
housing, and beddings reduces the infestation of ticks,
flies, and mosquitoes . Environmental management:
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Water drainage, changing landscape vegetation, or
animal housing design can discourage vector breeding
1 Biological control: Introducing natural enemies
(e.g., larvivorous fish) or pathogens (e.g., Wolbachia-
infected mosquitoes) provides a cost-effective and
environmentally friendly alternative to chemicals . On
the other hand, extensive use of chemicals can result in
resistance, environmental contamination, and health
hazards. Integrated Vector Management (IVM) places
strong emphasis on the coordinated use of several
methods adapted to local ecological and socioeconomic
situations !,

Vaccination is an inexpensive way of preventing
outbreaks of diseases, especially in endemic areas.
Successful experiences include the Development of RVF
vaccine campaigns in Kenya and Tanzania, which have
cut outbreak severity by half. Bluetongue virus (BTV)
vaccination in Europe, where large-scale immunization
has contained the spread through affected areas 1.
Trypanosomiasis control, which is frustrated by the
absence of a commercial vaccine but is instead addressed
via chemoprophylaxis and insect control. The principal
hindrances to successful vaccination are cold-chain
supply chains, lack of funding, and scarcity of vaccine
doses for some diseases. There is also an urgent need to
investigate new candidate vaccines, especially for vector-
borne diseases with narrow therapeutic windows 2.

Immunopathogenesis and Host Susceptibility Under
Heat Stress

Heat stress is a significant factor affecting the
immunopathogenesis of vector-borne diseases through the
weakening of host defense mechanisms and the creation
of physiological conditions favorable for the pathogen’s
establishment and growth. The high temperatures trigger
the hypothalamic-pituitary-adrenal axis and lead to
continuous cortisol secretion, which in turn suppresses
both innate and adaptive immunity by reducing
macrophage activity, interfering with T-cell proliferation,
and blocking antigen presentation. Water loss due to heat
affects the epithelial and mucosal barriers, thus increasing
the skin and oral-nasal tissues’ permeability and making
it easier for the pathogen to get in after a vector bite. The
oxidative stress that is produced during heat exposure at
the cellular level interferes with the neutrophils, dendritic
cells, and natural killer cells’ functions, thus delaying the
process of recognizing and clearing the pathogen Pl
Nutritional stress linked to lower forage intake during
hot weather makes immune dysfunction worse, mainly
through the lack of zinc, selenium, and antioxidant
vitamins, which are crucial for interferon signaling,
antibody production, and leukocyte activation. These
immune system weaknesses give a chance to intracellular
pathogens like Theileria, Babesia, and Anaplasma to grow

more rapidly and to arboviruses such as the Bluetongue
virus or the lumpy skin disease virus to reach higher levels
in the bloodstream. Consequently, stressed animals not
only show more severe symptoms but also stay infectious
for a longer period, which in turn makes them more
open to secondary infections and helps the spread of the
pathogen within the herd. In general, heat stress changes
the host from a strong immunological barrier to a tolerant
reservoir, thereby increasing the vector-borne disease
spread in the warmer climate 21,

Modeling Temperature Effects on Vector-Borne
Disease Transmission

The effect of climate change on the spread of vector-
borne diseases in livestock has been a subject of varied
modeling techniques, one of which is SIR (Susceptible-
Infected-Recovered) compartmental models, along
with agent-based models (ABMs), and remote sensing-
assisted predictive frameworks. SIR models are capable of
estimating the time-dependent prevalence and incidence
of the disease, as they provide a mechanistic framework
for doing so, and allow the use of temperature-sensitive
parameters like vector biting rate, pathogen extrinsic
incubation period, host recovery rate, etc. Agent-based
models give the advantage of better resolution in the
simulations as they create individual vectors, hosts, and
their interactions, and hence more accurately reflecting
the dynamics of the disease caused by different patterns
of movement, contact, and microclimate exposure.
Remote sensing-assisted models, through the access
to environmental data like land surface temperature,
rainfall, and vegetation indices, enable the identification
of vector habitats, the prediction of spatiotemporal
risk patterns, and this is especially relevant in
areas with limited epidemiological surveillance.
In a numerical way, temperature has a direct effect on the
basic reproduction number (R,), which increases with
vector survival, biting frequency, and pathogen replication
rates in a nonlinear manner. High temperatures lead to a
faster transmission of pathogens and consequently, there
is an increase in the number of degree-days, the total of
thermal exposure required for the pathogen development,
so Ro and EIR (entomological inoculation rates) are
increased proportionately . As an example, one can
take the case of the Culicoides-transmitted Bluetongue
virus, which is said that the transmission intensity can
be increased by 15-30% if the virus is allowed to mature
in the vector through every 1-2°C warming. The models,
once put together, clearly show that temperature is a
quantitative factor that links the microclimate changes
to the vector physiology, pathogen development, and
finally, the livestock infection risk through the provision
of a predictive surveillance and targeted mitigation
framework under future climate scenarios ! (Fig. 5).
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Vector-Borne Disease Transmission and Risk
Communication under Climate Change

Climate variability plays a major role in the understanding
the transmission dynamics of vector-borne diseases that
affect humans and animals, such as Crimean-Congo
hemorrhagic fever (CCHF), leishmaniasis, and Japanese
encephalitis (JE). Increased temperatures, changes
in precipitation, and natural disasters, which are all
consequences of climate change, are also factors that
expand the habitats of the vectors, speed up the replication
of the pathogen, and increase the contact rates of the host
with the vector. The Middle East and South Asia regions are
noted for being affected the CCHF virus through the heat
generated from the proliferation of Hyalomma ticks 1%l
Besides, the reduction of water sources due to the drought
causes the animals to congregate, which results in a higher
incidence of tick bites. In the case of Latin America and
South Asia, the fluctuations in climate are directly related
to the changes in sandfly populations that are already
assisting in the leishmaniasis transmission among the
cattle, goats, and wildlife reservoirs. On the other hand,
warmer winters and monsoon-associated waterlogging
in the South and Southeast Asian regions are the primary
factors that increase Culex mosquito abundance, thus
exacerbating JE outbreaks in pigs, cattle, and humans 7.
Quantitative modeling suggests that warming up the
ante in terms of the duration of pathogen extrinsic
incubation periods (EIP), the accumulation of degree-
days, and the rate of infectiousness via vector (EIR),
thus, in unison pushing the basic reproduction number
(Ro) and the probability of an epidemic outbreak up. To
cope with these hazards, risk communication plans must
be multi-pronged, region-specific, and aimed at different
stakeholders: Besides learning about preventive measures
against vectors, proper husbandry, and signs of disease
early, thelivestock owners and farmers should be informed;
timely alerts using weather and vector surveillance should
be issued by public health officials; and participation of the
community should include mapping of vector hot spots
using participatory approach and vaccination campaigns

where necessary. The community messaging must couple
climate predictions with local epidemiological data to lead
preventive actions and stress the steps that are already in
place such as insecticide application, controlled grazing,
and installing protective barriers during the peak of
vector activity. Climate-vector—-pathogen interaction has
been mechanistically understood and is now coupled
with evidence-based communication, which means these
strategies can raise the alarm, decrease livestock death
rates, and cut down on the transmission of zoonotic
diseases to humans .

Tick-Borne Babesia Infections in Livestock

Ticks are key mediators of transmission for a wide
range of protozoan pathogens, namely, Babesia ovis and
Babesia species in small ruminants and equids. Their
pathogenicity has been a matter of great concern from
the epidemiological and economic standpoint in the
Mediterranean Basin, the Middle East, and in Tirkiye,
where the farming of sheep, goats, and equids is prevalent.
The main symptoms of B. ovis infection in sheep and goats
are hemolytic anemia, weight loss, and lower production
of wool or milk, while, on the other hand, B. caballi and B.
equi cause equine babesiosis, which is manifested by fever,
anemia, lethargy, and sometimes, death. Consequently,
the affected animals perform poorly, and their trade is
restricted. Climatic conditions are critical in determining
disease transmission, as a warmer climate with changes
in rainfall leads to increased tick survival, faster Babesia
cycle, and longer active period for the vectors, resulting
in more infections. Furthermore, it was observed that
seasonal shifts and prolonged warm periods in Tiirkiye
and the Eastern Mediterranean have led to earlier and
longer transmission seasons of the diseases, thereby
increasing both disease burden and economic losses. The
review gets its strength and acceptance from the regional
and global aspects by including these species as a part of
it, which eventually gives a better picture of the climate
change impact on the protozoal diseases of ruminants and
equids P,

Research Gaps and Future Directions

Climate variability, vector dynamics, and livestock disease
are closely linked, yet data on climate, animal health,
and vector ecology remain fragmented across sectors.
Separate meteorological, veterinary, and environmental
data systems hinder early detection and coordinated
responses 7l For example, RVF outbreaks are often
preceded by heavy rainfall and mosquito proliferation,
but disconnected data streams reduce the ability to act
in time P, Establishing interoperable, real-time data
platforms is crucial for linking climate, vector, and disease
information, tracking population trends, and detecting
hotspots . Many high-risk regions, especially in sub-



Kafkas Univ Vet Fak Derg

11

ALKHERAIJE

Saharan Africa, Southeast Asia, and Latin America, lack
baseline surveillance. Strengthening local infrastructure,
such as weather stations, diagnostic labs, and electronic
records can close these gaps *?..

Predictive models can guide early warning, vaccination,
and vector control strategies. Current models often rely on
historical data,ignoring evolving vector behavior, pathogen
adaptation, and host immunity . Coarse-scale forecasts
alsolimitlocal decision-making. High-resolution, context-
specific models that incorporate real-time weather, land
use, livestock density, and socioeconomic factors are
needed . Neglected tropical diseases (NTDs) such as
East Coast fever and anaplasmosis remain under-modeled
due to poor surveillance and limited investment 2. AT
and ML offer opportunities to improve predictions using
satellite, drone, and health record data, but transparency
and accessibility are essential to build trust ¥°.

Underdiagnosis is common due to limited, slow, or
outdated diagnostic tools . In many rural areas, poor
laboratory capacity delays detection and response 7.
Effective vaccines are unavailable for several major
VBDs, and existing ones often face issues like cold
chain dependence, genetic variability, and high costs
B8 Investment in field-adapted rapid diagnostics
and thermostable vaccines is essential. Vulnerability
is amplified by poverty, marginalization, and poor
infrastructure .. Women play central roles in livestock
care but face gender-specific barriers to veterinary
services and resources '’ Integrating behavioral insights
and community engagement into control strategies can
enhance adoption and sustainability [1°!.

CONCLUSION

Climate change is increasing the transmission and impacts
of vector-borne animal diseases, threatening livestock
health, security, and rural livelihoods. Rising temperatures
and ecosystem shifts are creating new habitats for vectors,
driving more outbreaks that reduce animal productivity
and disrupt supply chains. Smallholder farmers, women,
and vulnerable communities are most affected, both
economically and nutritionally. Effective strategies such
as disease surveillance, vector control, vaccination, and
climate-resilient livestock production are essential for
adaptation. These must be supported by fair policies,
strong infrastructure, and education, and anchored in
the One Health approach that integrates animal, human,
and environmental health. To build resilience, research
must address data integration gaps, predictive modeling,
improved diagnostics, vaccine development, and social
vulnerability. A unified international effort is needed to
protect livestock systems and promote sustainable and
equitable livelihoods in a changing climate.
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