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Introduction
Food-borne bacterial pathogens represent a significant 
global public health issue because they are able to 
contaminate food and water, as well as cause acute 
illness and contribute to large-scale outbreaks [1]. They 
are mainly spread via poorly stored foodstuffs of animal 
and plant sources, undercooked, or contaminated food 
items, and their effects go far beyond acute morbidity to 
long-term effects and enormous economic burdens [2]. 
Some of the most important pathogens include Salmonella 
spp., E. coli (particularly Shiga toxin-producing strains 
such as O157:H7), Campylobacter spp., L. monocytogenes, 
and Shigella spp. [3]. These bacteria not only lead to 
gastroenteritis, systemic infection, and long-term health 
issues, but it is also becoming harder to handle, not 
only because of their ability to acquire and transmit 
antimicrobial resistance (AMR). The morbidity and 
mortality of food-borne disease are overwhelming. 
The World Health Organization (WHO) estimates that 

over 600 million individuals in the world are affected 
annually by food-borne diseases, with a death toll of 
about 420.000, and children under the age of five years 
are particularly vulnerable [4]. A significant part of this 
burden is due to bacterial pathogens, especially in low- 
and middle-income countries where inadequate food 
safety measures, lack of healthcare services/ affordable 
healthcare, and surveillance mechanisms contribute to 
this burden. These infections produce high economic 
costs due to the expenses of healthcare, productivity loss, 
and product recalls, as well as restrictive trade, which is 
increasing because of globalization, climate change, and 
international food trade [5]. Such realities point to why 
such a One Health approach, which connects human, 
animal, and environmental health, is critical.

Adding to this difficulty is the development of 
antimicrobial resistance in food-borne pathogens that has 
become one of the most significant global health threats 
of the 21st century [6,7]. Food-producing animals have 
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Abstract

The emergence of antimicrobial resistance (AMR) in bacterial food-borne pathogens 
is a real concern for public health and food security worldwide. Salmonella, Escherichia 
coli, Campylobacter, Listeria monocytogenes, and Shigella pathogens are becoming 
resistant to antimicrobials commonly used to treat infections, reducing the effectiveness 
of treatment and increasing the threat of fatal disease. Risk factors associated with 
this crisis include excess and inappropriate use of antimicrobials in both human and 
veterinary medicine, extensive use in food animal production to promote growth and 
prevent illness, poor hygienic standards in the food production chain, and the resurgence 
of antimicrobial resistance genes in environmental reservoirs. Antimicrobial resistance 
in bacteria affecting human beings, animals, and ecosystems represents a critical One 
Health challenge. Its implications are severe and include greater morbidity and mortality, 
longer stays in hospitals, and economic burden on health care and agriculture. The 
fight against AMR requires the rationalized use of antibiotics, more regulation, good 
agricultural practices, and sustainable options, including probiotics, phytochemicals, 
bacteriophages, and vaccines. Priorities should be directed toward new antimicrobials, 
alternative treatments, and combined surveillance in the future. This review article has 
described the key elements of AMR in food-borne pathogens.
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broad use of antibiotics in treatment, prevention, and 
even to promote growth, which has a selective pressure on 
resistant strains that can easily transfer to humans through 
the food chain, direct contact, or environmental sources. 
Pathogens that cause food-borne diseases are genetically 
flexible and can rapidly acquire resistance genes through 
horizontal gene transfer and therefore exacerbate 
the issue [8]. Consequently, resistant pathogens, like 
fluoroquinolone-resistant Campylobacter and multidrug-
resistant Salmonella, and extended-spectrum β-lactamase 
(ESBL)-producing E. coli, are getting harder to treat, 
sometimes necessitating expensive or toxic alternatives. 
The resultant effect is an increased burden of long-term 
illness, increased hospitalization, and mortality [9].

Therefore, AMR in food-borne bacterial pathogens poses 
a microbiological challenge, a global health and food 
security, and an economic crisis [10]. To solve this problem, 
a holistic and multi-disciplinary strategy is needed that 
incorporates medicine, veterinary science, agriculture, and 
environmental management in order to reduce resistance 
throughout the food chain [11]. This review thus identifies 
the rise and prevalence of antimicrobial resistance in food-
borne bacterial pathogens, their resistance mechanisms, 
modes of transmission, public health consequences, and 
mitigation measures.

Major Bacterial Food-Borne 
Pathogens of Concern
Bacterial pathogens are globally prevalent, frequently 
associated with food-borne outbreaks, and have a 
significant impact on food safety and public health. 
Salmonella, Escherichia coli, Campylobacter, Listeria 
monocytogenes, and Shigella are among the leading 
causes of food-borne illnesses worldwide, contributing to 
considerable morbidity, mortality, and economic losses. 
Their ability to contaminate a wide range of food products, 
persist along the food production chain, and increasingly 
exhibit antimicrobial resistance further underscores their 
public health importance (Fig. 1) [3].

Salmonella spp. remains one of the leading causes 
of food-borne illnesses globally, transmitted through 
contaminated poultry, eggs, meat, and dairy products, as 
well as fresh produce [12]. Non-typhoidal Salmonella (NTS) 
typically causes gastroenteritis with diarrhea, fever, and 
abdominal cramps, but can also result in invasive infections 
in vulnerable populations. Typhoidal Salmonella, such as 
S. Typhi and S. Paratyphi, are restricted to humans and 
cause systemic enteric fever [13-15]. The growing concern 
lies in antimicrobial resistance, with NTS showing 
multidrug resistance to ampicillin, chloramphenicol, 
and TMP-SMX, alongside increasing resistance to 
fluoroquinolones and third-generation cephalosporins 

due to extended-spectrum β-lactamases (ESBLs) like 
blaCTX-M. Alarmingly, extensively drug-resistant (XDR) 
S. Typhi strains, particularly reported from Pakistan, are 
resistant to almost all commonly used antibiotics except 
azithromycin and carbapenems, complicating treatment 
options [16]. This makes Salmonella not only a significant 
cause of morbidity and mortality but also a priority 
pathogen in the fight against antimicrobial resistance.

Escherichia coli, while a normal commensal of the human 
gut, includes several pathogenic strains that are major 
food-borne threats [17,18]. Shiga toxin-producing E. coli 
(STEC), particularly O157:H7, causes hemorrhagic colitis 
and life-threatening hemolytic uremic syndrome (HUS), 
often linked to undercooked beef, unpasteurized milk, 
and leafy vegetables [18,19]. Enterotoxigenic E. coli (ETEC), 
enteropathogenic E. coli (EPEC), and enteroaggregative 
E. coli (EAEC) are important causes of travelers’ and 
childhood diarrhea, especially in developing countries. 
Resistance among pathogenic E. coli is a rising issue, 
with many strains acquiring ESBL genes (blaCTX-M) 
and plasmid-mediated colistin resistance genes (mcr-1) 
that spread rapidly through the food chain, especially via 
poultry and meat [20]. Infections with multidrug-resistant 
E. coli are increasingly difficult to treat, and in the case 
of STEC, antibiotics are avoided altogether because they 
can trigger toxin release and worsen disease [21]. This 
dual challenge of virulence and resistance makes E. coli a 
significant global concern [22,23].

Campylobacter spp. mainly, C. jejuni and C. coli are the most 
frequently reported bacterial causes of human gastroenteritis 
worldwide. Infection occurs through undercooked poultry, 
unpasteurized milk, or contaminated water, with very low 
infectious doses sufficient to cause disease [24]. Symptoms 
include fever, abdominal pain, and bloody diarrhea, with 
serious post-infection complications such as Guillain–Barré 
syndrome. Resistance in Campylobacter is particularly 
troubling: fluoroquinolone resistance, caused by mutations 
in the gyrA gene, is now widespread, limiting treatment 
options [25]. Tetracycline resistance via the tet(O) gene is 
also common, while macrolide resistance, though lower, 
is emerging. Since macrolides (e.g., azithromycin) are the 
preferred treatment for severe cases, the rise of resistance 
threatens to undermine the last reliable therapeutic option. 
The close link between antimicrobial use in poultry and 
resistance in Campylobacter highlights the need for strict 
regulation and surveillance in food production systems [25].

Listeria monocytogenes is an opportunistic food-borne 
pathogen of high concern due to its ability to cause 
listeriosis, a severe invasive infection in pregnant women, 
newborns, the elderly, and immunocompromised 
individuals [26]. Unlike many other pathogens, Listeria 
can survive and grow at refrigeration temperatures and 
persist in food-processing environments through biofilm 
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formation [27]. Outbreaks are commonly linked to ready-
to-eat foods, deli meats, unpasteurized cheeses, and 
smoked fish. Clinical manifestations include septicemia, 
meningitis, and adverse pregnancy outcomes such 
as stillbirth or neonatal sepsis [28]. Although Listeria 
remains largely susceptible to first-line antibiotics such 
as ampicillin combined with gentamicin, resistance has 
occasionally been reported to tetracyclines and macrolides 
through genes like tet(M) and erm(B). Of greater concern 
is its resistance to disinfectants and sanitizers, which 
enables persistence in food-processing plants, increasing 
the risk of contamination and outbreaks [29]. Preventing 
Listeria infections, therefore, relies heavily on strict 
hygiene measures and food safety regulations rather than 
therapeutic interventions.

Shigella spp. Highest infectivity is seen with Shigella spp. 
(S. sonnei and S. flexneri) which can cause disease after 
a few organisms within the body. They easily spread via 
contaminated foods and drinks and via person-to-person 
contact, and so are especially prevalent in places with poor 
sanitation [30]. Shigellosis clinically manifests as dysentery 
with fever, cramping abdominal pains, and bloody 
diarrhea. Treatment can be very much required in order 
to reduce the morbidity and avert the spread; however, 
resistance is quick to develop. Ciprofloxacin, TMP-SMX, 
and azithromycin-resistant strains are now widespread, 
and in recent years, extensively drug-resistant (XDR) S. 
sonnei has been reported across the world, providing 
few effective oral treatment options [31]. This tendency 
presents a significant public health problem because 
Shigella epidemics can spread rapidly, and the emergence 
of resistant bacteria adds further limitations to treatment 
choices in both communal and medical institutions. These 
major bacterial foodborne pathogens are shown in Fig. 1.  

Emerging Food-Borne Bacterial Pathogens

Emerging food-borne bacterial pathogens are also of 

concern. Vibrio parahaemolyticus and V. vulnificus, 
which are linked with the consumption of seafood, are 
of increasing concern because they are spreading as a 
consequence of climate change [32]. Yersinia enterocolitica, 
which is mainly spread by pork, has been found to cause 
outbreaks regionally, and the bacteria are resistance to 
fluoroquinolones and cephalosporins [33]. Cronobacter 
sakazakii is a pathogen that is present in powdered infant 
formula and is a specific hazard to neonates, resulting in 
meningitis and septicemia with high mortality rates [34]. 
They are less frequent, but mention of these causative 
organisms illustrates how dynamic food-borne diseases 
are and how new hazards are being detected, commonly 
in conjunction with frontline antibiotic resistance. These 
emerging food-borne bacterial pathogens are explained  
in the following section:

Vibrio parahaemolyticus: V. parahaemolyticus is a naturally 
occurring halophilic, Gram-negative bacterium in estuarine 
and marine habitats is Vibrio parahaemolyticus. One of the 
most common causes of gastroenteritis linked to seafood 
is eating raw or undercooked shellfish, including clams, 
crabs, and oysters [35]. The thermostable direct hemolysin 
(TDH) and TDH-related hemolysin (TRH) toxins of 
V. parahaemolyticus are primarily responsible for its 
pathogenicity; they damage intestinal epithelial cells and 
cause fever, cramping in the abdomen, watery diarrhea, 
and nausea. Infection rates in temperate places have 
increased because of the expansion of their ecological 
niche brought on by climate change, particularly ocean 
warming [36].

Vibrio vulnificus: Another halophilic marine bacterium 
linked to serious wound and foodborne illnesses is Vibrio 
vulnificus. It can infect shellfish, especially oysters, and 
is prevalent in warm coastal waters. Ingestion or contact 
with tainted seawater through exposed wounds can result 
in infection [37]. Known for its high death rate, V. vulnificus 
frequently causes necrotizing fasciitis and septicemia, 
particularly in people with diabetes, liver illness, or 
immunocompromised conditions. The production of 
cytolysins, metalloproteases, and capsular polysaccharides 
that aid in tissue destruction and immune evasion is linked 
to the organism’s virulence [38]. Because of the growing 
worldwide seafood trade and rising sea surface temperatures, 
its increasing prevalence is becoming a significant problem.

Yersinia enterocolitica: A chronic concern with chilled 
goods, especially milk, pig products, and ready-to-eat items, 
is Yersinia enterocolitica, a psychrotrophic, Gram-negative 
bacterium that can survive and grow at refrigeration 
temperatures [39]. It results in yersiniosis, which can mimic 
appendicitis and is characterized by fever, enterocolitis, 
and mesenteric lymphadenitis. A plasmid-encoded type 
III secretion system (T3SS) and outer membrane proteins 
that promote adhesion, invasion, and resistance to host Fig 1. Major bacterial food-borne pathogens of concern



Antimicrobial Resistance in Food-Borne Pathogens Kafkas Univ Vet Fak Derg
4

immune systems are examples of virulence factors [40]. 
The organism is a major concern for food sectors that use 
lengthy cold chains because of its capacity to survive at 
low temperatures and withstand cold storage.

Cronobacter sakazakii: An opportunistic bacterium 
primarily associated with powdered infant formula, 
Cronobacter sakazakii (previously known as Enterobacter 
sakazakii), poses a significant risk to newborns and 
babies [41]. This Gram-negative bacterium can cause 
serious infections like necrotizing enterocolitis, sepsis, 
and newborn meningitis. Its survival in dry food matrices 
and resistance to desiccation help explain why it persists 
in production settings. To increase its survival during 
processing and storage, C. sakazakii creates biofilms and 
has stress tolerance mechanisms [42]. Its importance to 
public health is highlighted by the severity of infection 
consequences, even if its prevalence is minimal.

Mechanisms of Antimicrobial 
Resistance in Food-Borne 
Pathogens
There are now a variety of mechanisms through which 
food-borne bacterial pathogens overcome the effects 
of antimicrobial agents, and this makes their treatment 
and control measures complicated [43,44]. These are drug 
inactivation via enzymes, efflux pumps, and decreasing 
permeability, target change or shielding, and horizontal 
gene transfer (Fig. 2) [18]. Importantly, the relative 
contribution of these mechanisms varies among major 
food-borne pathogens and explains the distinct resistance 
patterns observed in organisms such as Salmonella, 
Campylobacter, Escherichia coli, and Shigella. Cumulatively, 
these mechanisms of adaptation not only contribute to 
bacterial survival on exposure to antimicrobial stress 
but also promote the distribution and perpetuation of 
resistance throughout ecosystems [45].

Enzymatic Inactivation of Drugs

The enzymatic alteration or deactivation of antimicrobial 
compounds is one of the most common AMR mechanisms 
of food-borne pathogens. Numerous bacteria will make 
enzymes, e.g., β-lactamases that cleave the β-lactam ring 
in penicillin and cephalosporins, making them inactive. 
Extended-spectrum beta-lactamases (ESBLs) are the 
most common cause of β-lactam resistance in E. coli and 
Salmonella spp.[46], and are particularly relevant to the 
emergence of multidrug-resistant and extensively drug-
resistant (XDR) S. Typhi, where ESBLs and carbapenemases 
severely limit therapeutic options.  ESBLs cause resistance 
to large numbers of β-lactams (including third-generation 
cephalosporins). On the same note, carbapenemases 
destroy carbapenems, which are called antibiotics of last 
resort. Aminoglycoside-modifying enzymes (AMEs) 
physically alter aminoglycosides by adding phosphate, 
acetate, or adenosine groups, hence reducing their affinity 
to the ribosomal sites [47]. These enzymatic alterations 
highly limit the treatment measures and the rise of 
multidrug resistance in food-borne bacteria.

Efflux Pumps and Reduced Permeability

Efflux systems and changes in membrane permeability 
are another primary defense strategy employed by food-
borne pathogens. Efflux pumps are membrane-bound 
proteins that actively transport antimicrobials to the 
extracellular space, reducing the drug concentrations to 
below efficacious levels [48]. For example, the efflux pump 
AcrAB-TolC in E. coli and Salmonella confers resistance 
to several classes of pharmaceutical antibiotics, including 
fluoroquinolones, tetracyclines, and chloramphenicol [49]. 
The CmeABC efflux pump is very important in 
Campylobacter spp. in resistance to macrolides and 
fluoroquinolones. Meanwhile, decreased expression or 
structural modulation of outer membrane porins reduces 
antibiotic uptake [50]. Collectively, these mechanisms 
promote multidrug resistance and enable the bacteria to 
persist even against a varied collection of antimicrobial 
substances.

Target Modification and Protection

The mechanism of action of an antimicrobial agent is 
usually its binding to a particular target in bacteria, and 
mutation or variation of that target may cause resistance [45]. 
Campylobacter and Salmonella have point mutations in 
their gyrA gene that change the DNA gyrase, resulting 
in fluoroquinolone resistance [18]. Similarly, mutation in 
the ribosomal RNA or ribosomal proteins may lead to 
macrolide, tetracycline, and aminoglycoside resistance 
(Fig. 2) [51]. The other example is for Streptococcus 
pneumoniae, in which mutations in penicillin-binding 
proteins decrease β-lactam binding affinity (this again is 
rarer in the prototypical food-borne pathogen). Bacteria 

Fig 2. Phenotypic mechanism of antibiotic resistance in foodborne 
bacterial pathogens
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will also employ protective proteins, including tet(M), 
that protect the ribosomal targets against tetracycline. 
Such alterations help bacteria to grow and survive beyond 
antimicrobials [52].

Horizontal Gene Transfer

Horizontal gene transfer (HGT) is a key driver in the 
spread of AMR in food-borne pathogens, contributing 
to the rapid uptake of resistance determinants that build 
up in other bacteria. β-lactam, aminoglycoside, and 
sulfonamide resistance genes can be found on plasmids, 
which transfer between bacteria easily in a cross-species 
and cross-genus manner since they are extrachromosomal 
elements of DNA [53]. Transposons are mobile pieces of 
genetic material that incorporate resistance genes into 
the DNA of chromosomes or plasmids and enable their 
transmission. Integrons encode multidrug resistance 
and integrate gene cassettes encoding resistance 
determinants [8]. As another example, integrons in the 
Shigella and Salmonella are often carry resistance genes 
to sulfonamides, aminoglycosides, and trimethoprim [54]. 
In Salmonella and Shigella, integrons frequently harbor 
resistance genes against sulfonamides, aminoglycosides, 
and trimethoprim, contributing to the emergence of 
multidrug-resistant and XDR lineages. Environments 
within the food chain, livestock production systems, 
and environmental reservoirs facilitate horizontal gene 
transfer (HGT), serving as reservoirs for the emergence 
and dissemination of novel multidrug-resistant food-
borne pathogens that can be transmitted between animals 
and humans [53].

Drivers of AMR Emergence in 
Food-Borne Bacteria
The emergence of antimicrobial resistance (AMR) of 
food-borne pathogens is not a random process, but its 
rapid development is a direct consequence of the selective 
pressures and interdependent activities in human health, 
agriculture, food production, and the environment (Table 
1) [55]. Mounting evidence points to several important 
drivers that promote the existence and proliferation of 
resistant bacteria throughout the continuum of the farm-
to-fork. This has been a significant global public health 
hazard [56].

Overuse and Misuse of Antibiotics in Human Medicine

Inappropriate prescription of antibiotics in medical care 
among human beings is one of the major contributors 
to AMR in human health. Such are the use of antibiotics 
to treat viral diseases, over-the-counter self-medication, 
inadequate treatment with antibiotics, and excessive use 
of broad-spectrum agents, which exert potent selective 
pressure on resistance [57]. These selective conditions, such 

as food-borne pathogens like Salmonella and Shigella,  
can cause recurrent infections in humans, leading to 
repeated exposure to antibiotics, thereby letting the 
resistant strains multiply. Also, multidrug-resistant strains 
of enteric pathogens acquired in the hospital setting 
may be the cause of hospital-acquired infections whose 
transmission into the community could be accomplished 
by host carriers and through contaminated sewage 
streams [58].

Antibiotic Use in Food Animals 

One of the most significant causes of food-borne bacterial 
resistance is the extensive use of antimicrobials in the food 
production of livestock. Antibiotics are often administered 
not only for treatment (therapy) but also for disease prevention 
(prophylaxis) and growth promotion. Continuous low-dose 
exposure creates an ideal environment for the selection of 
resistant bacteria in the gut flora of animals [59]. These resistant 
pathogens, such as E. coli, Salmonella, and Campylobacter, can 
then contaminate meat, milk, eggs, and other animal-derived 
foods [60]. For instance, the widespread use of tetracyclines 
and fluoroquinolones in poultry and cattle farming has been 
strongly linked to resistance in Campylobacter and E. coli. 
Moreover, resistant strains can spread to farm workers and 
surrounding communities, creating a One Health problem 
that connects animal, human, and environmental health 
(Table 1) [61].

Transmission Pathways of AMR Food-Borne 
Pathogens

Farm-to-Fork Continuum: The farm-to-fork continuum 
describes the journey of food from primary production to 
consumption, and at every stage, resistant bacteria can enter 
or proliferate. On farms, resistant pathogens originating 
from livestock or contaminated feed can contaminate meat, 
milk, or eggs [78]. In aquaculture and produce farming, 
resistant bacteria from fertilizers, and irrigation water may 
persist on seafood, fruits, and vegetables. Once these foods 
enter the processing chain, opportunities for amplification 
and cross-contamination increase, making the entire 
continuum a major route for AMR dissemination [79].

Food Processing and Handling Practices: In slaughter-
houses, dairies, and food processing plants, lapses in 
hygiene and sanitation allow resistant pathogens to 
contaminate products. For example, improper separation 
of clean and contaminated carcasses during meat 
processing may spread resistant Salmonella [80]. Similarly, 
inadequate pasteurization or unsanitary handling of milk 
and dairy products can allow resistant L. monocytogenes 
or E. coli strains to persist. Resistant bacteria can also 
survive in biofilms that form on food-contact surfaces, 
making eradication difficult and contributing to long-
term contamination [81].
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Cross-Contamination in Retail and Household Settings: 
During handling and preparation of food products in 
markets or at home, cross-contamination is a major 
hazard factor. Raw meat may transfer resistant bacteria 
to fresh vegetables or ready-to-eat foodstuffs by using a 
common cutting board, a knife, or a storage vessel [82]. 
Hygienic cooking or refrigeration is also relevant in 

terms of bacterial survival and transmission [83]. Even 
low-level resistant strains can infect people, in case they 
colonize especially children, older people, or people with 
compromised immunity.

International Trade and Travel: Globalization also boosts 
the movement of resistant pathogens across borders. 
Seafood, fresh produce, and meat trade may bring foreign 

Table 1. Drivers of antimicrobial resistance in food-borne bacteria

Driver of AMR Key Practices/
Source

Examples of 
Commonly Used 
Antibiotics

Major Pathogens 
Involved

Mechanism of 
Resistance Spread

Public Health 
Implications References

Antibiotic Use 
in Food Animals 
(Therapy)

Treatment of 
sick animals with 
antibiotics

Penicillins, tetracyclines, 
fluoroquinolones

E. coli, Salmonella, 
Campylobacter

Selection pressure 
enriches resistant 
strains in gut flora

Infections in humans 
become harder to treat

[62]

Antibiotic Use 
in Food Animals 
(Prophylaxis)

Preventive use in 
herds/flocks

Sulfonamides, 
macrolides E. coli, Salmonella

Maintains 
background 
resistance even 
without active 
infection

Reduces drug 
effectiveness in clinical 
medicine

[62]

Antibiotic 
Use in Food 
Animals (Growth 
Promotion)

Low-dose continuous 
feed additives

Tetracyclines, 
streptomycin

Enterococcus spp., 
E. coli

Promotes selection of 
multidrug-resistant 
gut bacteria

Transmission to 
humans via meat, eggs, 
milk

[63]

Poultry Farming Antibiotics in broiler 
& layer systems

Fluoroquinolones, 
tetracyclines

Campylobacter 
jejuni, E. coli

Resistant pathogens 
contaminate meat/
eggs

Foodborne outbreaks 
with drug-resistant 
strains

[64, 65]

Cattle & Dairy 
Farming

Antibiotics for 
mastitis, growth β-lactams, tetracyclines Salmonella spp., L. 

monocytogenes
Resistant bacteria in 
milk & meat

Milk-borne resistant 
infections

[66]

Aquaculture Antibiotics in fish/
shrimp farms

Oxytetracycline, 
sulfonamides

Vibrio spp., 
Aeromonas spp.

Resistance genes 
spread via water

Marine resistome 
expansion

[67]

Slaughterhouse 
Contamination

Cross-contamination 
during slaughter N/A Salmonella, 

Campylobacter
Spread from gut 
contents to carcasses

Multidrug-resistant 
pathogens enter food 
chain

[68]

Dairy Processing Post-pasteurization 
contamination N/A L. monocytogenes

Survival and 
recontamination in 
dairy products

Risk of outbreaks via 
cheese/milk

[69]

Produce 
Contamination

Irrigation with 
contaminated water N/A E. coli O157:H7, 

Salmonella

Resistant strains 
spread from manure/
water

Fresh produce as AMR 
carriers

[70]

Food Handlers Poor hygiene in food 
processing N/A Shigella spp., E. coli Transfer via human 

contact

Foodborne outbreaks 
in retail/household 
settings

[71, 72]

Global Food 
Trade

Export/import of 
contaminated foods N/A Salmonella, 

Campylobacter
Rapid transboundary 
movement

Globalization of 
resistant pathogens

[73]

Environmental 
Release (Manure 
Use)

Animal manure as 
fertilizer

Residual antibiotics, 
resistant bacteria E. coli, Salmonella

Resistance genes 
move to soil microbes 
& crops

Human exposure via 
raw produce

[74]

Environmental 
Release 
(Wastewater)

Hospital/industrial 
effluents

Multiple antibiotic 
residues

Environmental 
bacteria & 
pathogens

Horizontal gene 
transfer in water 
bodies

Creates “hotspots” of 
AMR

[75]

Soil Resistome
Long-term 
accumulation of 
resistance genes

N/A Pseudomonas, 
Enterobacteriaceae

Natural gene 
exchange via 
plasmids, 
transposons

Source of novel AMR 
traits

[76]

Aquatic 
Ecosystems

Runoff from farms, 
aquaculture

Tetracyclines, 
quinolones

Vibrio, Aeromonas, 
Enterococcus

Resistance genes 
persist in sediments 
& rivers

Zoonotic spillover to 
humans and wildlife

[77]
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bacterial species whose resistant nature was not a common 
phenomenon [84]. Similarly, international travel exposes 
individuals to resistant strains present in food or water,  
which can then spread upon their return home. 
This unregulated and swift movement facilitates 
the internationalization of AMR transmission, and it 
explains the need to work more internationally to combine 
surveillance systems [85].

Public Health Implications of 
AMR in Food-Borne Pathogens
The existence of antimicrobial resistance (AMR) in 
foodborne pathogens poses a significant threat to the 
population, whose impacts extend beyond personal 
infection, affecting healthcare systems, food safety, 
and global economies [18,86,87]. Antibiotic resistance in 
pathogens not only complicates treatment outcomes but 
also increases the risk of transmission of pathogens with 
serious consequences to society [60].

Increased Morbidity and Mortality

Diseases resulting from antimicrobial-resistant food-borne 
pathogens are often associated with increased morbidity 
and mortality, as opposed to those affected by susceptible 
pathogens [65,88]. Antibiotic-resistant Salmonella, E. coli, 
and L. monocytogenes infections frequently lead to long-
term illnesses, increased complications, and increased 
incidences of hospitalizations. There is a disproportionately 
increased risk in the vulnerable group, e.g. those are 
children, the elderly, and the immunocompromised, with 
some of the infections developing into life-threatening 
ailments, e.g., septicemia or meningitis [89].

Limited Treatment Options

The limitation of effective treatment options is one of 
the most relevant immediate effects of AMR. The first-
line antibiotics have included fluoroquinolones and 
third-generation cephalosporins, to which there has been 
increased resistance in food-borne pathogens. In some 
cases, pathogens exhibit multi-drug resistance (MDR), 
rendering conventional therapies ineffective and forcing 
reliance on last-resort antibiotics such as carbapenems or 
colistin [90]. This not only complicates treatment regimens 
but also increases the risk of adverse side effects and 
treatment failure.

Economic Burden on Healthcare and the Food 
Industry

The economic implications of resistant food-borne 
pathogens are twofold:

Healthcare Systems: Resistant infections increase the 
length of hospital stays, diagnostic costs, and treatment 
expenses, straining already burdened healthcare systems. 

The need for more expensive or prolonged therapies 
further amplifies costs [91].

Food Industry: Outbreaks of resistant pathogens can lead 
to mass recalls, trade restrictions, reputational damage, 
and loss of consumer trust. Also, the cost of the operations 
is greatly increasing due to regulatory interventions, 
testing requirements, and stricter biosecurity measures. 
Taken together, AMR exerts an economic dual burden on 
the food production industry and on public health [92].

Zoonotic and Pandemic Potential: Food-borne pathogens 
are zoonotic in nature and are transmitted between 
animals and humans either through food, direct 
contact, or via environmental contamination. With the 
introduction of resistance characteristics, the threats grow 
exponentially, since these pathogens can evolve far and 
wide both in species and geographical distributions [87]. 
Globalization of food trade and human movements 
can lead to localized outbreaks becoming a worldwide 
menace. The development of pandemic-potential strains, 
e.g., multidrug-resistant Salmonella or E. coli, shows the 
ability of AMR food-borne pathogens to cross borders and 
become global crises, particularly in those environments 
with low surveillance and limited healthcare resources [93].

Strategies to Mitigate AMR in 
Food-Borne Pathogens
The alarming rise of antimicrobial resistance (AMR) in 
food-borne pathogens requires multifaceted mitigation 
strategies that combine human, animal, and environmental 
health interventions under a One Health approach [94]. 
Preventing the spread of resistant strains and reducing 
antibiotic dependence are essential to safeguarding public 
health, food security, and global economies (Table 2) [95,96].

Future Directions 
Tackling the growing problem of antimicrobial resistance 
(AMR) in food-borne pathogens requires practical, 
innovative, and globally coordinated solutions. With 
resistant strains of Salmonella, E. coli, and Campylobacter 
becoming more common, the search for safe and effective 
alternatives to conventional antibiotics is more important 
than ever. Promising options include bacteriophages that 
specifically attack resistant bacteria, antimicrobial peptides 
produced by natural immune defenses, nanotechnology-
based drug delivery systems designed to reduce toxicity 
while improving precision, and the use of probiotics and 
plant-derived compounds to strengthen host immunity 
and block pathogen colonization. Vaccination in food 
animals, such as poultry, against Salmonella, also offers 
a way to lower infection rates and reduce the need for 
antibiotics. At the same time, modern tools like genomics, 
proteomics, and metagenomics can speed up the discovery 
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of resistance genes, new therapeutic targets, and early 
outbreak signals. The One Health approach is central, 
recognizing that resistance spreads across humans, 
animals, and the environment, and highlighting the need 
for strong surveillance in farms, hospitals, food production 
systems, and even wastewater. Success will depend on 
collaboration between researchers, veterinarians, farmers, 
policymakers, and global organizations, with special 
attention to low- and middle-income countries where 
resources are limited. Sustainable, fair, and coordinated 
efforts will be key to protecting both food safety and 
public health.

Conclusion
A major health concern across the globe is antimicrobial 
resistance among food-borne pathogens, e.g., Salmonella, 

E. coli, Campylobacter, L. monocytogenes, and Shigella. 
This crisis is spurred by the misuse of antibiotics in 
humans and animals, their use in large amounts in food 
production, poor hygiene practices, and environmental 
reservoirs of resistance genes. The effects are far-reaching, 
including sickness and death, extended hospital stays, a 
reduction in costs incurred in health care, and lost profits 
in the economy. AMR, as a classical example of One 
Health, connects the health of humans, animals, and the 
environment. It should be handled by more responsible 
usage of antibiotics, tighter actions, and safer food 
processing and farming. Other potential options, like 
probiotics, bacteriophages, vaccines, and phytochemicals, 
are promising as additional ways to mitigate the use of 
antibiotics. Consequently, the COVID-19 pandemic has 
exacerbated the spread of AMR, which requires immediate 
international cooperation and interdisciplinary action. 

Table 2. Strategies to mitigate AMR in food-borne pathogens under One Health

Strategy Specific Action Target Sector Expected Impact Examples/ Tools References

Rational Antibiotic Use

Prescribe only when 
clinically indicated Human Medicine

Reduce unnecessary 
exposure to 
antimicrobials

Prescription guidelines [97]

Correct dosing 
and full treatment 
adherence

Human Medicine Minimize resistance 
selection

Clinical stewardship 
programs

[97]

Avoid self-medication Human Medicine Prevent misuse and 
resistance Public health education [98]

Veterinary Stewardship

Use only under 
veterinary 
supervision

Veterinary Medicine Ensure responsible use Prescription-only model [99]

Ban use for growth 
promotion Veterinary Medicine Reduce selective pressure EU/WHO bans, alternative 

feed strategies
[99]

Limit prophylactic 
use Veterinary Medicine Prevent resistance 

buildup Targeted metaphylaxis [99]

Good Agricultural Practices
Improve farm 
biosecurity and 
sanitation

Agriculture Reduce pathogen 
circulation Hygiene protocols [100]

Food Safety Practices Prevent cross-
contamination Food Chain Limit spread of resistant 

bacteria HACCP implementation [101]

Food Handling Proper cooking and 
storage Consumers Inactivate resistant 

bacteria Food safety campaigns [102]

Alternatives to Antibiotics

Phytochemicals and 
essential oils Veterinary/ Agriculture Suppress resistant 

pathogens Plant-based feed additives [103,104]

Probiotics and 
prebiotics Veterinary/ Agriculture Enhance gut health and 

immunity Lactobacillus, inulin [103,105,106]

Vaccines against 
pathogens Veterinary Reduce infection 

incidence
Salmonella vaccines in 
poultry

[103]

Policy & Regulation

Enforce restrictions 
on antibiotic sales Governance Minimize OTC misuse Prescription-only policies [107]

Establish integrated 
surveillance networks

One Health (Human–
Animal–Environment)

Early detection of 
resistance WHO-GLASS, OIE-WAHIS [107]

Global Cooperation
Harmonize 
regulations and 
outbreak response

International Prevent cross-border 
AMR threats

Tripartite collaboration 
(WHO–FAO–OIE)

[108]
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With antimicrobial protection, we are securing the future 
of effective treatment, robust food systems, and population 
health.
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