Kafkas Univ Vet Fak Derg
31 (3): 293-321, 2025

DOI: 10.9775/kvfd.2025.33751

Kafkas Universitesi Veteriner Fakultesi Dergisi

Journal Home-Page: http://vetdergikafkas.org
E-ISSN: 1309-2251

REVIEW ARTICLE

Comprehensive Review of Fowl and Duck Adenovirus Vaccines
Development: Innovations, Challenges, and Future Directions

Mohammad Farzad AFSHAR'!
Nor Yasmin ABD RAHAMAN 13

Norfitriah MOHAMED SOHAIMI *©)® Mohd Hair BEJO 23
Mazlina MAZLAN 2® Nurulfiza MAT ISA 34

! Department of Veterinary Laboratory Diagnosis, Serdang, Malaysia Faculty of Veterinary Medicine, Universiti Putra Malaysia,
43400 Serdang, Selangor, MALAYSIA

? Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM
Serdang, Selangor, MALAYSIA

? Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia, Serdang, MALAYSIA

* Department of Cell Biology and Molecules, Faculty of Biotechnology and Biomolecular Sciences, 43400 UPM Serdang, Selangor,
MALAYSIA

Abstract

Fowl adenovirus (FAdV) and Duck adenovirus are key poultry pathogens, causing
inclusion body hepatitis, hydropericardium syndrome, Egg Drop Syndrome (EDS),
and sudden mortality in broilers, layers, and ducks. These pathogens contribute
significantly to economic losses in the global poultry industry. Consequently, measures
such as vaccine development to control and prevent these agents have been extensively
researched, with recent advancements showing promise. This review discusses recent
advancements in vaccines for avian adenovirus species, challenges faced in studies,
and future directions for developing effective vaccines against these viruses. Our study
highlights that research has focused on 2nd (subunit) and 3" (recombinant viral vector)
generation vaccines, which combine multiple immunogenic proteins for single-shot
protection against various avian diseases. Studies show that capsid proteins, particularly
fiber, provide the highest protection rates, with reduced viral shedding and clinical
signs in poultry. Significant discrepancies exist among studies evaluating vaccines for
poultry due to variations in bird type, age, challenge strains, vaccine strains, dosage,
administration frequency, small sample sizes, and unexamined immune responses or
pathogenic mechanisms. These challenges hinder optimal vaccine identification, as
many fail to protect chickens fully. Future studies should focus on real-life testing, FAdV
infection mechanisms, and passive immunity transfer to progeny post-immunization.
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contains a significant portion of the antigenic site across
all serotypes and includes a type-specific epitope for
antibody neutralization [,

INTRODUCTION

The Fowl Adenovirus (FAdV) belongs to the genus
Aviadenovirus of the Adenoviridae family. FAdV is a non-
enveloped DNA virus with icosahedral symmetry. Fowl
adenovirus (FAdV) is a non-enveloped, double-stranded
DNA virus composed of three major structural proteins:
hexon, penton, and fiber 'l. Among 12 serotypes of fowl
adenovirus (FAdV), FAdV-1, FAdV-4, and FAdV-10 both
carry two fiber genes (i.e., fiber-1 and fiber-2), whereas
other serotypes have only one .

Fowl adenoviruses (FAdVs) are classified into five species
(A-E) and 12 serotypes. Serotypes 2, 11, 8a, and 8b are
linked to inclusion body hepatitis, while serotype 4 is
primarily associated with Hydropericardium syndrome.
Species classifications follow ICTV nomenclature based
on serotype groupings ¢,

Hydropericardium syndrome (HPS), also known as

High amino acid variability in the fiber protein, particularly — hepatitis hydropericardium syndrome (HHS), affects

in the head domain or knob region, leads to binding with
different receptors .. The knob region of the fiber protein

chickens and was first reported in Pakistan 35 years ago "],
Caused by virulent FAdV-4, HPS leads to amber-colored
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fluid accumulation in the pericardial sac and an enlarged
liver with hemorrhages or necrosis ¥!. HPS outbreaks in
Asia and Latin America cause major economic losses,
including up to 80% mortality, reduced productivity,
and the need for antibiotics due to adenovirus-induced
immunosuppression (%13,

Over the past two decades, the number of IBH outbreaks
has risen across various geographic regions, highlighting
the global spread of the disease. IBH affects broilers up
to five weeks of age in the field, though sporadic cases
have also been observed in layers and broiler breeders.
Mortality during IBH outbreaks typically peaks within 3-4
days, reaching up to 10% and, in some instances, as high
as 30% ¢4,

Vaccination is the most effective method for control and
prevention of the disease, either by horizontal or vertical
transmission in poultry farms ¢l Fowl adenovirus
(FAdV) significantly impacts poultry due to mortality
and treatment costs. Despite vaccines, poor cross-
protection, incomplete efficacy, and emerging strains
demand improved solutions. Technological advancements,
including recombinant and vector-based platforms, offer
innovation opportunities. A global approach is essential to
address disparities in vaccine development, distribution,
and accessibility, guiding future strategies.

FIRST-GENERATION VACCINES
(CONVENTIONAL VACCINES)

1. Live Attenuated Vaccines

Fowl Adenovirus Species A

Adenoviral gizzard erosion (AGE), caused by FAdV-1,
has been linked to significant economic losses in broiler
flocks due to growth retardation and reduced slaughter
weight '*1. AGE has also been reported in broilers infected
with FAdV-8a and -8b %17, Recent outbreaks in pullets
and layers, especially in cages or alternative systems,
have led to increased mortality and decreased egg
production or weight 2! These outbreaks in layer-type
chickens are attributed to FAdV-1 infections, confirmed
by virus detection and experimental reproduction in SPF
birds [18,20,21]‘

Recently, the development of efficacious protection against
the disease due to live vaccination with an apathogenic
FAdV-1 was demonstrated in broilers #2. However,
the recent increase of reported AGE cases in layers
and documented economic losses in natural outbreaks
indicate the need for an efficacious protection strategy in
older birds. Therefore, a study by Grafl et al."® produced a
live-attenuated vaccine against AGE.

The study demonstrated that a live vaccine prevents

symptoms and gross pathological changes in the gizzards.
Additionally, no negative impacts on the development of
the reproductive tract were observed in pullets and layers
at 20 weeks of age. In vaccinated groups with single dose
and double dose, homologous antibodies were detectable
starting one week post-vaccination, with peak titers
averaging 10.4%2.1 log, at 0 days post-challenge (DPC)
and 9.7+2.5 log, at 7 DPC, indicating robust immune
responses (Table 1) '8,

Fowl Adenovirus Species C

After identifying Fiber-2 as a critical factor in FAdV-4
pathogenicity, several studies explored the development
of Fiber-2 recombinant vaccines ®%. Concerns over
FAdV-4 vaccine efficacy and antibody detection led to
development a live-attenuated vaccine. Serial passages
of the virulent FAdV-4 KNU14016 strain in LMH cells
reduced pathogenicity, evidenced by delayed and absent
cytopathic effects after the 20™ and 100™ passages. Genetic
analysis revealed a C-base insertion at 39,197 bp and a 26-
bp sequence shortening in LMHS80, supporting vaccine
attenuation and improved delivery methods. Chickens
injected with LMH10 had 89% mortality within five
days and high viral shedding. LMHS80 showed delayed
mortality (starting at day 9) and minimal shedding.
Different administration routes for LMH80 provided
protection, with oral and intramuscular groups showing
no mortality (Table 1) ).

Recent research suggests that local immune responses
triggered by vaccination play a crucial role rather than
neutralizing antibodies **. However, the vaccine-induced
cellular immune response and the involvement of various
immune genes have not been fully explored. Thus, another
study aimed to enhance understanding of the immune
response elicited by live-attenuated viruses and the role
of attenuated vaccines in immune defense during avian
viral infections ),

Most immunized animals were observed to survive and
remain active, whereas LMHI10 infection proved fatal in
the absence of LMH80 pre-treatment. The immunization
with LMH80 was shown to influence viral clearance, as
the virus was detected less frequently among immunized
animals, which corresponded with their higher survival
rate (Table 1). Moreover, the residual virus levels in the
immunized group were determined to be lower than those
in the control group.

LMH80 immunization boosted CD44+ expressing CD8+
T cells regardless of FAdV-4 infection. Helper T cells
expanded significantly only after both immunization and
viral challenge. Total T (CD3+) and yd-T cell populations
remained unchanged. Monocytes expressing MHCII and
secreting cytokines increased upon FAdV-4 exposure,
despite no pre-immunization monocyte expansion.
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FAdV-4 infection caused a threefold reduction in splenic
B cells, prevented by LMHS80 pre-treatment. LMHS80
immunization regulated T cells, macrophages, and B cells,
enhanced memory T cell subsets and CD44+, CD4+,
CD8+ cells, and maintained MHCII+ macrophages.
Activated CD4+ and CD8+ T cell infiltration increased in
the liver ],

Fowl Adenovirus Species E

Vaccine development faces manufacturing scale-up
challenges *2l. Cell culture-based production offers a
more efficient alternative to traditional embryonated
egg culture, enhancing vaccine availability to meet
the demands of the expanding production animal
population 23,

Anchorage-dependent cells require attachment surfaces
for proliferation ®¥. Tissue culture flasks improved
contamination control but limited large-volume vaccine
production. Microcarriers, particularly spherical bead-
type ones like Cytodex™ 1, enable industrial-scale
mammalian cell proliferation, supporting ADC growth
in stirred tank bioreactors for vaccine production 4.
It is a multipurpose microcarrier that can be used to
grow various cells. While culturing the influenza virus
vaccine in a stirred tank bioreactor on Vero cells, Cytodex™
1 was used and optimized to the production capacity
of 6000 L [#1,

For virus propagation, cells are usually needed, and they
are necessary in higher volumes for vaccine production.
This is because cell concentration is of significant
importance in determining viral titer ¢, and viral titer
has control on the efficacy of vaccines, which makes the
need for a high volume of cells for volume production of
vaccine an ongoing requirement. Therefore, a study aimed
to propagate fowl adenovirus serotype 8b (FAdV-8b) in
chicken embryo liver (CEL) cells adapted to Cytodex™ 1
microcarriers using a bioreactor (Table 1).

FAdV isolate (UPMO08136) was successfully propagated
in chicken embryo liver (CEL) cells using Cytodex™ 1
microcarriers in a stirred tank bioreactor (STB), enabling
large-scale virus production for vaccine development. No
molecular changes were observed in the hexon and fiber
proteins. This method was used to create an attenuated
vaccine against FAdV-8b 1],

In another study by the same author ¥, an inactivated
and attenuated vaccine was inoculated in chickens to see

the difference between each and the booster dose effect
(Table 1).

No clinical symptoms or histopathological changes were
observed in unchallenged chickens. Inoculated groups (B,
C, D) had higher liver weights at 14 and 21 dpi and lower
liver-to-BW ratios at 35 dpi, indicating protection. Group

B had the highest antibody titers at 42 dpi (>2000 ELISA
units), while Group D exceeded 4000 units at 35 dpi.

Inoculated chickens showed significantly higher CD3+,
CD4+, and CD8+ T lymphocytes than controls, with
elevated CD3+ cells in the liver, spleen, and thymus
at multiple intervals. CD4+ and CD8+ cells increased
significantly, especially in the thymus at 42 dpi. Inoculation
reduced FAdV viral load and shedding while confirming
attenuated isolate stability in a stirred tank bioreactor,
enhancing virus production and cost-efficiency. The
study provided novel insights into chickens’ cell-mediated
immune response to FAdV8b vaccines, showing booster
doses significantly accelerate higher antibody levels by
35 dpi 19,

A study using subcutaneous FAdV vaccination showed
no clinical signs or histological changes in vaccinated
chickens, unlike controls with liver discoloration and
splenomegaly. Vaccinated groups had higher body weights
and FAdV antibody titers at 35 and 42 dpi. CD3+ and
CD4+ T lymphocytes increased in vaccinated chickens,
with reduced viral genome copies in the liver and cloaca,
indicating lower viral shedding and better clearance ).

2. Inactivated Vaccines
Fowl Adenovirus Species C

With the rise of viral resistance to numerous antiviral
drugs, controlling viral issues becomes increasingly
challenging and can lead to significant economic losses ¥’
Few commercial HPS vaccines use traditional liver
homogenates, potentially causing allergic reactions due to
non-specific proteins. A study explored developing a cell-
free vaccine to address these concerns ©°2.

The study showed that a 20-dose HPS-infected liver
vaccine induced a higher serum anti-HPS ELISA antibody
titer (1110.4) at 40 days than 25 doses (1071.9) or 30
doses. The infectivity titer of 1x10°.°/mL BLD50 produced
stronger antibody responses (1052.5+18.04) than 1x10*.°/
mL (772.6+£133.1) and 1x105/mL (588.00£61.97). The
liver homogenate vaccine achieved higher antibody titers
(2009.3) than primary hepatocyte culture vaccines. Oil-
based tissue culture vaccines (1148.45) outperformed gel-
based ones (1137.2). Findings support liver homogenate
and Montanide-adjuvanted cell culture vaccines for
inducing robust anti-HPS responses 2.

Fowl Adenovirus Species E

Inactivated vaccines are easier to administer and distribute
globally without specialized storage, benefiting regions
with limited medical resources or infrastructure ©°.
Findings of the literature reveal that several inactivated
vaccines have been developed. For instance, one study
used Fowl adenovirus 8b (UPMO08136) isolated from an
IBH outbreak in Malaysia.
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The study used Montanide adjuvant with an inactivated
virus and compared booster and non-booster groups.
No clinical signs or lesions were observed in vaccinated
groups, while challenged controls showed pale livers and
symptoms. Antibody titers in the non-booster group
reached nearly 4000 ELISA units by 35 DPIL. CD4+
T-lymphocytes in the spleen and CD8+ T-lymphocytes in
the liver were significantly higher (P<0.05) in vaccinated
groups. Viral copy numbers in the liver were markedly
lower in booster and non-booster groups, demonstrating
the vaccine’s effectiveness in reducing viral replication
and shedding ..

Selecting the right chemical for virus inactivation is
essential in vaccine development, preserving the virus’s
structural integrity and entry-associated domains to
effectivelytrigger virus-neutralizingantibodyresponses .
Alkylating agents like p-propiolactone (BPL) and
binary ethyleneimine (BEI), as well as gamma and
ultraviolet radiation, target the viral genome while
preserving neutralizing epitopes. Cross-linking agents
like formaldehyde and glutaraldehyde, or denaturing
methods involving pH and temperature changes, modify
viral proteins, risking epitope degradation and reduced
immunogenicity *.

Among these agents, BEI stands out for its mechanism of
inactivating non-enveloped viruses by targeting their RNA/
DNA genome. The active component of BEL ethylenimine,
reacts explicitly with nucleic acids, leaving other viral
proteins unaltered . This selective interaction makes
BEI a promising agent for preserving viral-neutralizing
epitopes, which are critical for vaccine efficacy. Building
on this understanding, a study was conducted to evaluate
the inactivation of FAdV-8b using BEI. The methodology
and findings of this study contribute valuable insights into
the development of vaccines targeting FAdV-8b while
ensuring the preservation of its immunogenic properties.

The vaccine inactivated with BEI for 32 hours was
safe and immunogenic in broiler chickens. At 28 DPI,
antibody titers were 1+0 for the control group, 321+£189
for Group Al, and 690+484 for Group B1, with Groups
Al and BI1 showing significantly higher titers (P<0.05).
Booster groups A2 (602+367) and B2 (874+317) also
had significantly higher titers (P<0.05) than the control.
No significant difference (P>0.05) in antibody titers
was found between booster and non-booster groups,
regardless of inactivation time .

Commercial FAdV vaccines exist for FAdV-4 and FAdV-
8b but not for FAdV-8a. An inactivated FAdV-8a vaccine
using the CY21 strain (15 LMH cell passages) was tested.
Group A (10°° TCIDso/0.1 mL) had antibody titers
exceeding 6000 (P<0.0001), significantly higher than the
control. Group B (10°.° TCIDs,/0.1 mL) showed titers

below 2000 (P<0.05). Group C (10*° TCIDsc/0.1 mL)
displayed clinical symptoms, liver lesions, and viral DNA
in organs. Viral shedding was fully inhibited in Group A,
partially (40%) in Group B, and not prevented in Group
C. Group A demonstrated complete protection with no
viral DNA in organs (Table 1) ..

SECOND GENERATION VACCINES
1. Subunit Vaccine
Fowl Adenovirus Species C

Subunit vaccines are highly immunogenic and eliminate
the risk of incomplete inactivation associated with whole-
virus vaccines, making them a promising option for
controlling HHS. Several studies have shown that subunit
vaccines can effectively protect against virulent FAdV-4
challenges 3. However, most current research on subunit
vaccines has concentrated on the Fiber-2 protein of FAdV-
4, with the protective potential of vaccines targeting the
knob domains of Fiber-1 and Fiber-2 yet to be explored.
Therefore, subunit vaccines from the Fiber-1/2 knob
and Fiber-2 proteins of FAdV-4 was produced [,

AST and ALT levels were significantly higher (P<0.05)
in unvaccinated challenged chickens at 3, 5, and 7 dpc
compared to controls and vaccinated groups. Necropsies
revealed severe HHS lesions in unvaccinated challenged
chickens, while vaccinated groups showed healthy organs.
The Fiber-1/2 knob vaccine offered superior protection
against FAdV-4, with no lesions, compared to minor
lesions in the Fiber-2 vaccine group.

gqPCR revealed significantly lower viral DNA copy
numbers in the heart, liver, spleen, lungs, and kidneys of
vaccinated groups compared to unvaccinated controls.
The Fiber-1/2 knob vaccine group showed significantly
reduced viral loads at 3 and 5 dpc (P<0.05) and earlier
antibody detection (7 dpv) compared to 14 dpv in
the Fiber-2 group. Neutralizing antibody titers in the
Fiber-1/2 group increased to 4.1, 5.6, and 6.5 at 14, 21,
and 28 dpv, respectively, compared to 3.3, 4.1, and 4.3
in Fiber-2. Body weight loss was also minimized with
Fiber-1/2 vaccination ",

Similarly, another study ! explored the development of
subunit vaccines by combining multiple capsid protein-
derived epitopes into multilinked fusion recombinant
proteins (MLFRPs), which were recombinantly expressed
in E. coli. Unlike previous research that primarily assessed
the immunogenicity of individual capsid proteins by
expressing their complete amino acid sequences 1>,
this approach focused on leveraging the combined
immunogenic potential of multiple epitopes within a
single recombinant construct.

The study designed multiantigen epitope tandem proteins
(MAETPs) from four FAdV-4 capsid proteins (hexon,



304

Comprehensive Review of Fowl and Duck Adenovirus Vaccines Development

Kafkas Univ Vet Fak Derg

penton, fiberl, and fiber2), selecting efficient antigenic
epitopes using bioinformatics tools. The epitopes were
linked with GGGGS linkers, and DNA sequences
encoding MAETPs were chemically synthesized and
assembled into multilinked fusion recombinant proteins
(MLFRPs) using T4 ligases. The resulting constructs were
cloned into pET-28a vectors and expressed in E. coli.
Five MLFRPs (FAdV4:F1-P-F2-H, FAdV4:F1-F2-P-H,
FAdV4:F1-F2-H-P, FAdV4:F1-P-H-F2, FAdV4:F1-H-
F2-P) were produced and evaluated for their potential as
protective antigens through chicken immunization.

Microneutralization assays showed that MLFRP-
immunized chicken sera effectively neutralized FAdV-
4, with FAdV4:F1-P-F2-H (over 1200) and FAdV4:F1-
F2-P-H (nearly 1200) eliciting the highest neutralizing
antibody titers. FAdV4:F1-P-F2-H provided full protection
with a single immunization, while other proteins required
two doses. After one immunization, protection rates
were 83.33% for FAdV4:F1-F2-P-H and the inactivated
vaccine, 66.67% for FAdV4:F1-F2-H-P, and under 50%
for FAdV4:F1-P-H-F2 and FAdV4:F1-H-F2-P. Hepatic
lobules in the FAdV4:F1-P-F2-H group appeared intact,
while other groups displayed vacuolated or blurred cells.
Further studies could investigate alternative adjuvants to
enhance immune responses 7],

Bioinformatics, especially immunoinformatics, aids in
designing multi-epitope subunit vaccines efficiently. A
study by Mugunthan et al.*® used these techniques to
create a cost-effective FAdV vaccine, activating B and T
cells with sustained activity over 50 days, promoting long-
term immune memory.

2. Recombinant Subunit Vaccines

Fowl Adenovirus Species A and Duck Adenovirus
Serotype 1 Vaccine

Duck Atadenovirus A (DAdV-1), responsible for egg-drop
syndrome 76 (EDS 76) in laying hens, belongs to the
Atadenovirus genus within the Adenoviridae family, with a
linear double-stranded DNA genome of 30-35 kb 2. First
identified in 1976, EDS 76 has one serotype **l. DAdV-
1 typically infects waterfowl, such as ducks and geese **..
In laying hens, it reduces egg production and quality.
Vaccination is a control measure ®>*. DAdV-1’s capsid
protein contains neutralizing epitopes, aiding vaccine
development “7*®l. The fiber protein, which includes the
N-terminal tail, shaft, and C-terminal knob domain, is
crucial for inducing virus-neutralizing antibodies and
serves as a target for subunit vaccines 1921,

Although the production of subunit vaccine from the
fiber was successful and induced with the fiber protein
also induced lymphocyte proliferation response, cytokine
secretion, and reduced viral load in SPF chickens %%,

there is no data regarding its efficacy in layer hens. Thus,
a study ¥ was conducted to fill this gap.

The study *?, the first to evaluate the subunit fiber vaccine
of DAdV-1 in layer hens, demonstrated superior efficacy
over the inactivated vaccine. HI titers at 21 and 28 dpi
reached 11.1+1.0 log, and 12.5+1.4 log,, surpassing the
inactivated vaccine. Egg production rates remained at
90-100% for vaccinated hens, while unvaccinated hens
dropped to 12%. A critical HI titer of at least 7 log, was
essential to prevent production losses, protecting against
the virus’s effects for up to 180 days post-challenge 3.

Fowl Adenovirus Species C Vaccines

Evaluation of the fiber gene of FAdV has become necessary
because, through the interaction of the fiber knob with
host cells, the fiber gene is responsible for tissue tropism,
which is also very important in the virulence of FAdV 2.
As one of the capsid proteins of FAdV-4, Fiber2 has been
identified as an efficient protective immunogen for subunit
vaccine candidates ¢l In one study "%, immunization
with rFiber-1 was evaluated.

The study showed that neutralizing antibody levels
increased significantly one week after the second
immunization and remained significant for up to 10
weeks. All chickens stayed healthy, with viral genome
content in tissues below detection limits. The rFiber-1
protein provided protective efficacy, with an average
antibody titer of log, 7.8 (Table 1)""".

Similarly, A subunit vaccine candidate was developed
using the recombinant Fiber2 protein (the rFiber2 subunit
vaccine) expressed in bacteria from the hypervirulent
FAdV-4 GZ-QL strain, isolated in Guizhou province.
Additionally, a DNA vaccine candidate, the Fiber2 DNA
vaccine, was created using the recombinant plasmid
pVAX1-Fiber2 I,

Both vaccine candidates induced significant Fiber2-
specific antibody levels (rFiber2 subunit 50ug: 24 pg/
mL; 100 pg: nearly 26 pg/mL; 150ug: 22 pg/mL; Fiber2
DNA vaccine: 20-22 pg/mL). The rFiber2 subunit
vaccine showed superior efficacy (80-100%) compared
to the Fiber2 DNA vaccine (50-60%) and commercial
inactivated vaccine (80%). Higher dosages, especially
100 pg, produced significantly higher antibody titers.
Both vaccines elicited robust cellular and humoral
immune responses without significant histopathological
changes 1.

Building on the development of the fiber-2 recombinant
subunit vaccine, a triple vaccine was formulated by
combining the fiber-2 protein antigen with inactivated
HON2 Al and NDV antigens, offering a multivalent
approach to protect against multiple avian pathogens *..
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No significant difference in ELISA antibody titers against
FAdV-4 was observed between the triple vaccine group
(19 log,) and the monovalent vaccine group (over 19 log,)
containing 4 mg of fiber-2 protein (P>0.05), both showing
higher levels than unvaccinated controls (P<0.0001).
Fiber-2 did notinterfere with other antigens. Immunization
with fiber-2 protein induced stronger IFN-y secretion
and FAdV-4-specific cellular immunity (P<0.05). The
triple vaccine provided complete protection, with no viral
shedding or histopathological changes observed *\.

Expanding on recombinant fiber-based proteins in vaccine
development, a chimeric fiber vaccine, crecFib-4/11, was
engineered to combine epitopes from FAdV-4 and FAdV-
11, highlighting another innovative approach to enhance
immunogenicity.

Vaccination with crecFib-4/11 led to elevated systemic
antibody levels against the vaccine antigen (over 3 OD
at 27 days post-challenge), as measured by ELISA,
though neutralizing antibodies against FAdV-4 were not
produced. Nonetheless, vaccinated birds challenged with
virulent FAdV-4 exhibited significantly reduced clinical
symptoms and pathological lesions.

Vaccinated birds showed increased B lymphocytes in the
liverthroughoutthe post-challenge period, correlating with
hepatic lymphoid infiltration. The vaccine primed a rapid
rise of these cells in the blood, followed by their presence
in the liver. Monocyte/macrophage levels increased in
the blood, liver, and spleen of vaccinated+challenged and
control groups, while thymus levels decreased in challenge
controls. CD4+ T lymphocyte levels remained stable,
except for a late decrease in the bursa fabricius in challenge
controls, which vaccination prevented. Cytotoxic CD8a+
T cells were maintained across groups, with a vaccine-
induced rise in target organs. Vaccination reduced viral
loads in the liver, spleen, and bursa fabricius “.

In line with the development of chimeric fiber vaccines,
another study ' explored a different strategy by focusing
on a subunit vaccine using the combination of fiber-2
protein from FAdV-4 HB1505 and hexon, aiming to
evaluate its immunogenic potential and efficacy through
various dosage levels.

The study assessed rFH protein vaccine doses: 2.5 ug
(75% survival, 6/8), 5 pg (100%, 8/8), double 5 pg (100%,
8/8), and 7.5 ug (100%, 8/8), compared to 0% (0/7) in
challenge controls. Vaccinated groups maintained body
weight and showed significantly higher OD ELISA titers
(~2 for 2.5 pg; nearly 3 for higher doses), indicating
strong humoral responses. Viral loads in vaccinated
livers were significantly reduced. Truncated fiber two
proteins (Gly275 to Pro479) expressed in E. coli improved
solubility, while adding a hexon epitope (Met21 to Val55)
with a G3S linker enhanced immunogenicity '\

Expanding on the investigation of mixed subunit vaccines
comprising hexon and fiber proteins to identify the optimal
protective dose, the subsequent study concentrated on
assessing fiber and penton proteins, individually and in
combination, to optimize further dosing for adequate
protection 7],

Complete protection (10/10) was achieved 21 dpi with
fiber-2 doses of 20 pg/bird and 200 ug/bird, while penton
base protein provided complete protection only at 200 ug/
bird. At seven dpi, vaccinated chickens had significantly
elevated OD450 values (P<0.001): 1.006 (Fiber-20 pg),
1.458 (Fiber-200 pg), 2.059 (Penton-20 pg), and 2.576
(Penton-200 pg). Viral loads in tissues were reduced
compared to the challenge control group, though cloacal
swab loads remained higher. Fiber-2 provided full
protection at 10 pg/bird, with 5 pg offering 90% protection.
Penton base required 200 pg for complete protection,
with lower doses showing 70%-60% protection. No
adverse effects on body weight gain or inflammation were
observed 71,

The prokaryotic expression system was used for its high
yield, low cost, and ease of management in subunit vaccine
production. To address inclusion body formation during
fiber-2 expression, the culture temperature was lowered to
16°C, and Rosetta (DE3) cells were used, yielding 1.5 mg/
mL of soluble protein. Fiber-2 and penton base proteins
were successfully expressed with strong immunogenicity.
The use of Marcol™ 52 white oil as an adjuvant enabled
cost-effective, scalable subunit vaccines for FAdV-4 7).

Studies have shown that the trimeric knob domain of the
EDS virus from fowl adenovirus group III, when used as a
subunit vaccine, can induce hemagglutination inhibition
titers and serum-neutralizing activity comparable to
those of the full-length fiber protein %191 However,
the immune efficacy of the knob protein in FAdV-4 has
not yet been reported. Subunit vaccines are effective for
controlling FAdV's due to their safety, ease of mass antigen
production, and low cost. Therefore another study focused
on producing a subunit vaccine from the knob region of the
FAdV-4 and a minimum dose for complete protection I,
The study evaluated F2-knob subunit vaccine doses
(2.5 ug, 5 pg, 10 pg, and 30 pg) combined with ISA 71
VG adjuvant. Antibody levels exceeded the OD 0.125
cut-off by day 14, with Groups C (10 pg) and D (30 pug)
surpassing 0.4 OD and exceeding 0.8 by day 21. Groups C
and D had significantly higher antibody titers than Group
E (inactivated whole virus) at 14 days post-immunization
(P<0.0001).

All chickens immunized with 5 pg, 10 ug, or 30 pg of
F2-knob protein and the inactivated whole virus vaccine
were fully protected against FAdV-4, showing no clinical
symptoms. FAdV-4 virus shedding remained negative in
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Groups C, D, and E. Symptoms like lethargy and green
feces appeared in Groups F (challenge control) and A (2.5
ug) but not in Groups B (5 ug), C (10 ug), D (30 ug), and
E. Group E had significantly higher neutralizing antibody
titers than Groups A (P<0.05), B (P<0.001), C (P<0.001),
and D (P<0.01) after the challenge “°l.

Genome sequence alignment of all FAdV-4 strains
revealed that pathogenic and non-pathogenic strains are
classified into two genotypes. Recent Chinese isolates
exhibit a natural 1966 bp deletion and other genomic
differences compared to the classical non-pathogenic
strain ON1. However, the biological properties of Fiber-2
proteins in FAdV-4 strains with varying virulence remain
unexplored. In a study, the Fiber-2 proteins of the highly
virulent WZ strain and the non-virulent ONI strain of
FAdV-4 were successfully expressed and purified 8.

Chickens immunized with 2 ug of WZ-Fiber-2 protein
or the inactivated vaccine achieved complete protection
(10/10) with no morbidity, mortality, or histopathological
changes. FAdV-4 DNA shedding remained at background
levels, contrasting with the ON1-Fiber-2 and PBS groups,
where viral shedding persisted until death. Viral DNA
levels in the WZ-Fiber-2 group were significantly lower
than in the ONI-Fiber-2 group, comparable to the
inactivated vaccine group. Blood titers in the WZ-Fiber-2
group rose from 0.2 OD at two weeks post-priming to
over 0.4 OD at three weeks, significantly surpassing the
ON1-Fiber-2 and PBS groups (P<0.0001) ©8,

In recent years, lactic acid bacteria (LAB) have been
extensively used as delivery systems for key pathogen
antigens, including the circumsporozoite protein of
Plasmodium falciparum %), the spike protein of SARS-
CoV-2 1% and the heavy-chain antigen of Clostridium
botulinum serotype A neurotoxin [l Research has
demonstrated that FAdV-4 structural proteins, such as
Hexon, Penton, Fiber 1, and Fiber 2, can be expressed
in Escherichia coli and other systems to develop subunit
vaccines %018 However, the effectiveness of live
recombinant LAB in delivering FAdV-4 structural
proteins to protect against homologous challenges has not
yet been evaluated. Building on previous research, it was
hypothesized that oral immunization, capable of inducing
strong mucosal and humoral immune responses, could
serve as an effective strategy to prevent HPS caused by
FAdV.

Chickens immunized with recombinant strains expressing
1Hexon-CWA or DC-1Hexon-CWA exhibited significantly
higher Hexon-specific IgG (nearly 1.5 to over 1.5 OD,
14 days post-immunization) and sIgA levels (over 1 to
over 1.5 OD) compared to control groups (P<0.01). DC-
1Hexon-CWA strains, incorporating the DCpep, induced
higher antibody levels (P<0.01). Elevated mRNA levels of

ChIL-2, ChIFN-y, ChIL-4, and ChIL-10 were observed,
with MDXEF-1/DC-1Hexon-CWA achieving the highest
cytokine expression (P<0.01). Peripheral blood lympho-
cytes (PBLs) showed enhanced proliferation in the
MDXEEF-1/DC-1Hexon-CWA group (P<0.01). E. faecalis
strains provided superior protection, with the highest
survival rates and delayed mortality after FAdV challenge.
Mild HPS symptoms occurred ¢,

Intramuscular injections of inactivated or attenuated
vaccines have not successfully triggered intestinal mucosal
immunity. Recently, subunit vaccines, which share
similarities with inactivated vaccines, have been shown
to possess stable and safe properties *!1%. In theory,
vaccination methods that can stimulate effective immune
responses in the intestinal mucosa offer a promising
approach to preventing pathogens transmitted orally .
There remain significant risks of active infection when
using live, attenuated, and even inactivated vaccines.
Additionally, commercially available vaccines that
effectively stimulate intestinal mucosal immunity are
lacking. Therefore, exploring new types of vaccines is
essential. Henceforth, a recombinant bacteria for the
vaccine (probiotics surface-delivering Fiber2 protein) was
created.

Two weeks after primary, secondary, and third
immunizations, IgG and sIgA levels steadily increased
in groups immunized with Fiber2-expressing probiotics
(IgG: nearly 1 to over 1.5 OD; sIgA: over 1 to over 1.5 OD)
and remained higher than controls. DCpep-fused groups
(L. lactis/pTX8048-DCpep-Fiber2-CWA and E. faecalis/
pTX8048-DCpep-Fiber2-CWA) showed significantly
higher antibody levels (P<0.01). Elevated mRNA levels of
IL-2,1IFN-vy,IL-4,1L-10,1L-6,and IL-17 were observed inall
groups except L. lactis/pTX8048-Fiber2-CWA. Peripheral
blood lymphocytes (PBLs) exhibited significant responses
to rFiber2 protein. Viral loads and clinical symptoms
were significantly reduced in vaccinated groups. Elevated
serum IgG and sIgA confirmed the vaccine’s success in
inducing humoral and mucosal immunity, contributing
to immune protection in all vaccinated chickens 7).

Building on the development of recombinant bacteria
for probiotic surface delivery of the Fiber-2 protein, the
focus has also been shifted to dendritic cells (DCs) as
key antigen-presenting targets and the exploration of
fusion proteins, such as flagellin-antigen constructs, to
enhance immune responses and advance vaccination
strategies. Dendritic cells (DCs), known for their strong
antigen-presenting ability, are crucial targets for vaccines,
enabling precise and effective antigen delivery to enhance
immunogenicity 18] Short peptides targeting DCs
can be fused with antigens for vaccine preparation "%
Salmonella flagellin, a Toll-like receptor five agonist,
stimulates immune responses and is an adjuvant via oral
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or injection routes. Fusion proteins combining antigens
with flagellin retain activity, facilitating new vaccination
strategies against infections and cancers ">,

Recombinant FAdV-4-fiber2 and FliBc-fiber2-SP proteins
were produced by fusion PCR, inserted into the pET-
SUMO-His vector, and expressed in E. coli. Purified via
His-tag kits, proteins were verified by SDS-PAGE and
Western blot using anti-FAdV-4-fiber2 serum.

ELISA results showed anti-fusion protein IgG antibodies
in Groups I (fiber2) and II (FliBc-fiber2-SP) at 7 dpv,
significantly increasing by 21 dpv (P<0.001). FliBc-
tiber2-SP induced higher IgG levels (nearly OD2) than
fiber2 (over 1.5 OD) (P<0.05). Serum IL-4 and IL-2
levels were significantly elevated in immunized groups
(P<0.01), with FliBc-fiber2-SP showing higher IL-2 levels
(P < 0.05). Post-challenge, Group II had lower viral loads
(P<0.05) and a 100% survival rate, while Group I had
80% protection. Group III exhibited severe pathological
changes. RT-qPCR confirmed significantly reduced viral
loads in vaccinated groups (P<0.001), confirming the
superior efficacy of FliBc-fiber2-SP '],

In addition, recent efforts to control FAdV-4 have focused
on developing subunit vaccines using viral capsid proteins
like hexon, fiber, and penton, as well as non-structural
proteins such as the 100k protein. Saccharomyces cerevisiae,
the first fully sequenced eukaryote, is a cost-effective
eukaryotic expression system widely used for producing
pharmaceutical products, including subunit vaccines.
S. cerevisiae and other yeast species trigger immune
responses by promoting the maturation of dendritic cells,
facilitating the presentation of yeast-expressed antigens
through MHC class IT and MHC class I proteins %,
Consequently, S. cerevisiae has been utilized as a vaccine
carrier in various studies.

Recombinant yeast expressing Hexon-L1, Fiber-1, and
Fiber-2 proteins effectively stimulated immune responses
against FAdV-4 in chickens. Antibodies were undetectable
at zero and one wpi but appeared at two wpi, with
Fiber-1 showing the highest titer (2.4 log,), followed by
Fiber-2 (1.8 log,) and Hexon-L1. By three wpi, Fiber-1
(4 log,) and Fiber-2 (3.4 log,) titers were significantly
higher than Hexon-L1 (3 log,) (P<0.05). Protection
was observed in Fiber-1 and Fiber-2 groups, with no
gross or histopathological lesions post-challenge. The
Fiber-2 group exhibited superior serum neutralization,
highlighting the potential of yeast-expressed Fiber-1
and Fiber-2 proteins as protective FAdV-4 vaccine
candidates 1),

Fowl Adenovirus Species D Vaccine

FAdV-2/11 has become the most commonly isolated
type from cases of Inclusion Body Hepatitis (IBH)
and Hepatitis-Hydropericardium Syndrome (HHS) in

chickens, leading to significant economic losses globally.
FAdV-2 and FAdV-11 are closely related both serologically
and molecularly. As a result, isolates from either serotype
are collectively referred to as FAdV-2/11 1],

E. coli-produced recombinant proteins fiber-1, fiber-2,
hexon loop-1, and penton base were evaluated for FAdV-
4 protection, with fiber-2 showing superior efficacy.
However, no comparative studies exist for FAdV-2/11,
highlighting the need to assess these proteins individually
and in combination for developing suitable recombinant
subunit vaccines.

The study validated the successful expression and
characterization of recombinant penton base and
fiber proteins, which are critical for advancing vaccine
development ). This study addresses a research gap by
comparing the immune potency of penton base, fiber, and
their combinations for fowl adenoviruses beyond FAdV-
4. The fiber group demonstrated the highest survivability
rate at 80%, compared to 68% mortality in the challenged
control group, 44% in the penton base group, and 34% in
the penton + fiber group. Antibody titers peaked at seven
days post-immunization (1960.09+£87.06) and increased
sharply post-challenge (28 dpc: 6536.23+227.06). Viral
shedding in feces ceased by day 8 in the fiber group,
earlier than other groups, underscoring the fiber protein’s
superior protective efficacy *°l.

Fowl Adenovirus Species E Vaccines

Despite uncertainties surrounding the immune mechanisms
behind fiber-induced protection and the variability of
fiber types across species, a recombinant fiber from F
AdV-8a was tested for protective efficacy against
homologous (-8a) and heterologous (-8b) IBH strains [°!l.
This study is the first to extend the immune response
profile beyond the challenge time, comparing pre-
stimulated and naive responses. Cellular immune
subpopulations, including CD4+ T lymphocytes, were
stimulated by FAdV fiber subunits, with an increase in
CD8a+ T cells after a booster immunization with FAdV-
8b fiber 121,

The recombinant fiber vaccine provided significant
protection against FAdV-8a but limited cross-protection
for FAdV-8b. Vaccinated birds showed normal liver-to-
body weight ratios and reduced viral loads. Neutralizing
antibodies were detected in 73.5% for FAdV-8a/TR59 (4.4
log,+3.1), 38.8% for FAdV-8a/11-16629 (1.7 log,+2.3),
and minimally for FAdV-8b/764. Cellular immunity
revealed elevated B cells and TCR+ T cells '\

In another study, information on multiple linear epitopes
predicted in the Fowl Aviadenovirus E (FAdV-E) fiber
head (knob) was utilized to develop chimeric fibers
by exchanging sequences between two serotypes, each
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containing the proposed epitopes .. Two consecutive
segments of amino acid positions 1 to 441 and 442 to
525/523 in the fibers of FAdV-8a and -8b, types of Fowl
Aviadenovirus E that cause inclusion body hepatitis, were
swapped reciprocally to result in novel chimeras, crecFib-
8a/8b and crecFib-8b/8a.

The bivalent crecFib-8b/8a vaccine protected against
FAdV serotypes 8a and 8b, with viral loads undetectable
in vaccinated groups. Antibody titers exceeded 3 OD by
2 wpv, peaking at nearly 3.5 OD at four wpv. VV8b/8a
achieved higher peak titers (3.14+0.73 OD) compared to
VV8a/8b (0.51£0.65 OD) 130,

Cross-protection is essential for IBH, which involves
different serotypes from two FAdV species, but it holds less
significance for HHS, which is linked to a single serotype.
The penton base protein gene is relatively conserved
within serotypes of the same FAdV species, indicating its
potential for broad protection against IBH. Thus, another
study marks the first evaluation of the recombinant
penton base protein as a subunit antigen for IBH, aiming
to determine its effectiveness as a standalone vaccine ..
Recombinant subunit vaccines for FAdV were produced
by cloning and expressing penton base proteins Pb-7 and
Pb-8b from FAdV-7 and FAdV-8b strains, respectively.
Full genome sequencing confirmed strain identities.
Each recombinant antigen was tested separately in vivo
to assess immunogenicity and antigenic differences
between serotypes.

The Pb-7 study reported mortality rates of 35.7% in
vaccinated and 40% in control groups, with clinical
signs by 5 dpc. In the Pb-8b study, only one control bird
showed mild signs. Hepatic lesions indicative of IBH were
common post-infection. Pre-challenge antibody levels
were low in both studies, with OD means at 20 dpv of
0.11£0.17 (Pb-7) and 0.09+0.14 (Pb-8b). A Pb-8b booster
increased antibody titers to 1.23+0.70 OD at 6 dpb,
compared to 0.08+0.04 in controls. Despite boosted titers,
no pre-challenge sera showed in vitro neutralizing activity
against FAdV-8b P!,

3. Virus-Like Particle (VLP) Vaccines
Fowl Adenovirus Species C

Hexon, a key capsid protein of adenoviruses, is highly
immunogenic 2", It contains conserved pedestal regions
(P1 and P2), shared across adenovirus types, and seven
hypervariable regions (HVR1-7) that vary among
adenoviruses and are found in three loops (L1, L2, and
L4) 122123 Duye to its immunogenic properties, hexon has
been used as an antigen in vaccine development against
adenoviral infections. However, vaccines that are both
readily producible and capable of using hexon to provide
complete protection against adenoviral infections are still

unavailable 119124 Recently, virus-like particles (VLPs)
based on the hepatitis B virus core protein (HBc) have
gained significant attention as vaccine carriers. HBc can
be efficiently produced as VLPs across various expression
systems, can hold large foreign antigens at its central
immunodominant region (MIR), and can stimulate a
humoral response when in a properly folded, particulate
form "*!. Hence, a study focused on the production of
VLP vaccine *.

The HBc-hexon (Asp348-Phe369) construct provided 90%
protection against pathogenic FAdV-4, outperforming
HBc-hexon (Ser19-Pro82) and HBc-hexon (Gly932-
Phe956) constructs, which offered 70% and 40%
protection, respectively. The control groups vaccinated
with a commercial inactivated vaccine or PBS had 50%
survival rates. Histopathological analysis showed no
inclusion bodies in the HBc-hexon (Asp348-Phe369)
group, though mild vacuolar degeneration was observed.
HBc-hexon (Ser19-Pro82) and HBc-hexon (Gly932-
Phe956) groups displayed moderate degeneration and
necrosis with cellular infiltration. The superior protection
from HBc-hexon (Asp348-Phe369) likely stems from
the immune response elicited by this conserved epitope
displayed at HBc’s major immunodominant region. Serum
antibody titers exceeded 0.4 OD for HBc-hexon (Asp348-
Phe369) and HBc-hexon (Ser19-Pro82).

Moreover, the sequence and structure conservation of the
epitope region among adenovirus hexon proteins suggests
potential broader applications of this vaccine strategy
against infections caused by other adenovirus strains ..

4. Recombinant Virus Vaccines
Fowl Adenovirus Species C Vaccines

Recent studies found that Fiber-1, not Fiber-2, directly
triggered the viral infection of FAdV-4 via its shaft and
knob domains '*l. However, the molecular basis of
Fiber-2 in the pathogenesis of the highly pathogenic
FAdV-4 needs to be further elucidated. A study found that
fiber-2 interacts with karyopherin alpha 3/4 (KPNA3/4)
through its N-terminal 1-40 amino acids, with KPNA3/4
shown to promote the replication of FAdV-4. The study
used CRISPR-Cas technology to omit the fiber-2.

Co-IP and western blot analyses identified the N-terminal
1-40 amino acids of Fiber-2 as crucial for KPNA3/4
interaction. FAV4_Del replicated significantly slower
than wild-type FAdV-4, with viral titers 100 times
lower (10° TCIDso/mL vs. 6x107 TCIDso/mL) at 96
hpi. Immunofluorescence and western blot analyses
confirmed these results. FAdV-4-infected chickens
exhibited symptoms at 2 dpi, with mortality rates of 10%,
90%, and 100% at 3, 4, and 5 dpi, respectively, along with
severe necropsy findings. Conversely, FAV4_Del-infected
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chickens showed no symptoms or organ damage. Viral
titers from cloacal swabs in FAdV-4-infected chickens
ranged from 10°-10* TCIDs,/ml, but no virus was detected
in FAV4_Del-infected chickens from 2 to 8 dpi. Liver
viral titers in FAdV-4-infected chickens reached 10°-10”
TCIDso/mL, whereas FAV4_ Del-infected chickens had
titers below 10° TCIDso/mL, with similar findings in
kidney and spleen tissues. Chickens previously infected
with FAV4_Del displayed complete protection upon
challenge, with no symptoms or virus detection, unlike
the control group, where high viral titers (10°-10* TCIDso/
mL) were found in cloacal swabs and liver, spleen, and
kidney tissues at 2 to 4 dpc. These results highlight FAV4_
Del’s potential as an attenuated vaccine candidate 7],

Ensuring the safety of vaccine production and
administration is a critical priority in preventing
unintended exposure to virulent pathogens. To reduce the
potential biosafety risks of the virulent strain-inactivated
vaccine during production or clinical immunization, the
development of inactivated vaccines comprising non-
pathogenic strains should be pursued. Therefore, an
inactivated recombinant vaccine was produced .

Neutralizing antibodies exceeding 4 log, at seven dpv and
8 log, at 14 dpv were detected in IM and SC vaccinated
chickens. By two dpi, 40% of challenge control chickens
died, while immunized groups remained symptom-free
throughout.

Anatomical and histopathological analysis revealed no
abnormalities in the immunized and healthy control
groups. In contrast, the control group showed yellow-
brown pericardial effusion, liver enlargement, and
extensive necrosis. High FAdV-4 DNA levels were detected
in their liver, kidney, and spleen, while viral loads were
negligible in the immunized and healthy controls. Given
FAdV-4’s ability to infect various avian hosts, the vaccine
could be applied to commercial chickens, ducks, and wild
birds, reducing environmental biosafety risks (6572128131,

THIRD GENERATION VACCINES
1. Recombinant Vector Vaccines
Fowl Adenovirus Species C Vaccines

Hepatitis-hydropericardium syndrome (HHS) caused
by the highly pathogenic fowl adenovirus serotype 4
(FAdV-4) has resulted in substantial economic losses
to the poultry industry globally “*l. The fiber-2 gene, a
significant virulence determinant, is also a vital vaccine
target against FAdV-4. Therefore, the CRISPR/Cas9-based
homology-dependent recombinant technique was used
to replace the fiber-2 gene with EGFP (enhanced green
fluorescent protein) and generate a novel recombinant
virus, designated FAdV4-EGFP-rF2. Although FAdV4-

EGFP- rF2 showed low replication ability compared to the
wild-type FAdV-4 in LMH cells, FAdV4-EGFP-rF2 could
effectively replicate in LMH-F2 cells with the expression
of Fiber-2 I FAdV4-EGFP-rF2 was highly attenuated
in chickens and protected FAdV-4. Without fiber-2, it
induced neutralizing antibodies comparable to those with
fiber-2. Fiber-1 triggers infection, while fiber-2 determines
virulence and serves as a protective immunogen. FAdV-
1, FAdV-4, and FAdV-10 uniquely possess fiber-1 and
fiber-2, highlighting fiber-2’s significance in pathogenesis
and vaccine development 225126,

Although the hexon and fiber-2 genes are associated with
the pathogenic CH/HNJZ/2015 strain’s virulence %2, the
roles of these two genes in other virulent strains and their
exact locations remain unknown. A single amino acid at
position 188 of the hexon protein was further identified
as the determinant for FAdV-4 pathogenicity. Virulence
based on a single amino acid often appears in RNA viruses
but is rarely reported in DNA viruses. Amino acid 367
of the Tembusu virus E protein plays a critical role in
pathogenesis **], and amino acid 431 of the HIN1 swine
influenza virus (SIV) PB2 protein determines its virulence
in mice ™. Recently, there was a report that the single
amino acid R188 of the hexon protein is responsible for
novel FAdV-4 pathogenicity. Thus, the hexon gene, but
not fiber-2, was identified as the critical virulence gene
for FAdV-4 B,

All chickens survived and showed no symptoms when
inoculated with the rR188I mutant strain, and their serum
neutralized the non-pathogenic E188] mutant strain.
FAdV-4 hexon sequences from natural non-pathogenic
strains (ON1, KR5, B1-7) showed a conserved isoleucine
at position 188, whereas pathogenic strains had arginine.
The R188I mutant may activate the innate immune
or complement systems to neutralize non-pathogenic
FAdV-4 9,

The infection of FAdV-8a alone cannot cause severe
disease [3>13¢); however, the outcome may become
complicated when co-infected with other pathogens or
other serotypes of fowl adenoviruses *'%7, which raises
concerns for the prevention of FAdV-8a. Previously, De
Luca et al.®!l and Schachner et al.*” demonstrated that
either wild-type fiber or chimeric fiber derived from
FAdV-8a could protect against homologous challenge. So
far, only subunit chimeric Fiber proteins (crecFib-4/11
and crecFib-8a/8b) and inactivated chimeric FAdV-4
with FAdV-8b Fiber were developed %74, However,
the chimeric FAdV-4 with a fiber of FAdV-8a has
not yet been developed. Thus, in a study, A new
recombinant virus, FAdV4-F/8a-rF2, which expresses
the Fiber protein of FAdV-8a, was created using the
CRISPR-Cas9 and Cre-LoxP systems, with FA4-EGFP
serving as the template virus.
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FAdV4-F/8a-rF2 showed vaccine potential, with chickens
displaying no symptoms, lesions, or virus shedding.
Histopathology matched negative controls, indicating
attenuation. High neutralizing antibody titers were
observed for FAdV-4 (938.7) and FAdV-8a at 21 days
post-infection. This first bivalent vaccine candidate
against FAdV-4 and FAdV-8a in China offers promising
protection B2,

Additionally, while various inactivated and subunit
vaccines have been developed for FAdV-4 or FAdV-
8 individually 120138 no inactivated or recombinant
genetically engineered vaccine targeting both FAdV-4 and
FAdV-8 simultaneously has been documented.

The recombinant FA4-F8b expressed FAdV-8b fiber and
FAdV-4 Fiber-1/Fiber-2. The inactivated vaccine induced
neutralizing antibodies against FAdV-4 and FAdV-
8b, with NT averages at 7, 14, 21, and 28 dpv reaching
0, 1.3, 3.5, 7.8 (FAdV-8b) and 0, 1.8, 3.8, 9.8 (FAdV-
4). No antibodies formed for FAdV-8a. All vaccinated
chickens survived; challenge controls died at 3 dpc with
HHS lesions. Histopathology showed no symptoms in
vaccinated groups. Elevated viral titers were detected in
the liver, spleen, kidney, and cloacal swabs of challenge
control groups (3, 4, 5, and 7) at 1-9 dpc, while Groups
2 and 6 showed minimal to no viral presence. FA4-F8b
demonstrates robust protection, effectively preventing
infection and HHS symptoms 7.

Due to FAdV-4s emergence and high pathogenicity,
vaccine development is limited. Live FAdV-4 vector
bivalent or multiple vaccines could reduce production
costs and workload. Therefore, deleting 10 left-end and
13 right-end ORFs identified non-essential regions for
replication using an EGFP-indicator virus, marking the
first systematic identification. This provides insertion
sites for exogenous genes and valuable information for
gene function studies, supporting the development of live
FAdV-4 vector bivalent or multiple vaccines to reduce
production costs and workload.

The FAdV-4 vector expressed vvIBDV VP2 protein, and
rHN20-vvIBDV-VP2 conferred complete protection
against FAdV-4 and vvIBDV, with nearly log 8 antibody
titers at 21 dpv. Seven combinations (rDL1-EGFP to
rDR3-EGFP) enable multivalent vaccine development,
demonstrating successful exogenous gene delivery and
protection against HHS and related diseases 7).

Although several inactivated or subunit vaccines have
been developed against FAdV-4, live-attenuated vaccines
for FAdV-4 are rarely reported. Hence, a recombinant
virus FA4-EGFP, expressing the EGFP-Fiber-2 fusion
protein, was generated by the CRISPR/Cas9 technique.

Necropsy and histopathology showed no lesions in

FA4-EGFP-inoculated chickens, unlike severe hepatic
damage in wild-type FAdV-4 infections. Viral loads were
significantly lower, with no spleen detection and shedding
ceasing by three dpi. Neutralizing titers at 14 dpi for 10°,
10°, and 10* TCIDs, were 2.8, 3.0, and 2.3, rising to 7.5,
5.2, and 3.5 at 21 dpi, outperforming the inactivated
vaccine (0.8, 3.9) 127,

Adenoviral genes are genus-common or genus-specific.
Genus-common genes, conserved in the genome’s central
region, are crucial for structural proteins, replication, and
encapsidation. Genus-specific genes at genome ends encode
non-structural proteins for virus-host interactions. While
HAdV-C genus-specific genes are well-studied, FAdV
genes remain unexplored. Understanding these functions
supports attenuated vaccine development, offering
high efficacy, easy inoculation, and low costs #0131,
A reverse genetics system was developed to modify the
FAdV-4 genome using cell-free restriction digestion and
Gibson assembly. Three recombinant viruses were created:
FAdV4-GFP (replacing ORF1, ORF1b, and ORF2 with
GFP), FAdV4-GX4C (replacing ORF4 with mCherry),
and FAdV4-CX19A (deleting ORF19A). Inoculation of
chicken embryos with FAdV4-GX4C resulted in 100%
mortality between days 5-10, while FAdV4-GFP caused
embryo deaths starting on day 8. FAdV4-CX19A had
delayed mortality on day 11, suggesting that ORF19A
is linked to virulence but is not essential for replication.
Enhanced replication was observed in FAdV4-CX19A,
though not statistically significant .

Understanding viral gene roles is crucial for vaccine
development and adenoviral vector optimization.
Identifying essential genes aids vector construction, while
deleting nonessential genes increases cloning capacity.
Essential gene deletion creates replication-defective
vectors, and trans-expressed essential genes enable
virus-packaging cell lines. Genus-specific essential genes
in FAdV remain unidentified. An adenoviral plasmid
carrying deletions spanning all 22 genus-specific ORFs
of FAdV-4 was constructed to investigate this. Four out
of 14 embryos died in the XHE-CX19A group, while
all embryos survived in the XGAMI1-CX19A group,
highlighting differences in virulence among mutants.
Using reverse genetics, 21 FAdV-4 mutants with deletions
across the genome’s ends were constructed. No genus-
specific gene was essential for replication in LMH cells
or primary chicken hepatocytes, providing a foundation
for FAdV-4 vector development. Growth differences in
mutants between LMH cells and chicken embryos indicate
potential for attenuated FAdV-4 vaccine construction 2,

Identifying and manipulating viral essential and non-
essential genes supports adenoviral vector construction
and recombinant vaccine development, exemplified by a
trivalent vaccine targeting serotypes 4, 8, and 11.
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A recombinant FAdV-4 virus containing fiber genes of
FAdV-8b and FAdV-11 was constructed using an amp-
ccdB cassette and a p15A-cm-HNJZ-fber/8b plasmid 61,
The chimeric virus rFAdV-4-fber/8b + 11, inactivated
with formaldehyde and formulated into an oil-emulsion
vaccine, induced detectable antibodies in SPF chickens by
one week post-immunization. Anti-FAdV-4 Fiber-2 and
FAdV-11 antibody levels reached nearly 1 OD (450 nm),
and anti-FAdV-8b levels approached 2 OD by the second
week. All vaccinated chickens survived FAdV-4, FAdV-8b,
and FAdV-11 challenges without clinical signs.

Vaccinated chickens showed no gross or histopathological
lesions, unlike the challenge control groups. Viral DNA
copy numbers in the liver, heart, spleen, kidney, lung,
cecal tonsil, pancreas, bursa fabricius, proventriculus,
and duodenum were significantly lower in vaccinated
chickens. FAdV-4, FAdV-8b, and FAdV-11 excretion
ceased by 3, 4, and 5 days post-challenge, respectively.

A novel recombinant virus, rFAdV-4-fber/8b + 11, was
developed in another study to address the common
clinical co-infections with different FAAV serotypes. This
recombinant virus co-expresses the Fibers of FAdV-8b
and FAdV-11 by inserting the FAdV-11 fiber gene into the
1966-bp deletion region of the rFAdV-4-fber/8b genome,
providing a potential trivalent vaccine to prevent and
control HHS and IBH 1,

To address challenges in co-infections and enhance
antiviral strategies, novel recombinant FAdV-4 viruses
have been developed, employing advanced genetic editing
techniques to efficiently express foreign genes.

Traditional reverse genetics for recombinant fowl
adenovirus is inefficient. Using FA4-EGFP as a template,
the fiber-2 gene was edited via CRISPR/Cas9 and Cre-Loxp
technologies, creating an efficient double-fluorescence
system. This method successfully developed recombinant
virus FAdV4-HA(H9), expressing the HA gene of HON2
influenza. A rapid and efficient method for generating
fiber-2-edited attenuated recombinant FAdV-4 was
demonstrated for the first time in this study ** utilizing
CRISPR-Cas9 and Cre-LoxP systems. The recombinant
virus FAdV4-HA(H9) showed vaccine potential against
FAdV-4 and HON2 AIV. Chickens challenged with XZ491
exhibited significantly lower oropharyngeal viral titers at
5 dpc when inoculated with FAdV4-HA(H9) compared
to controls, as confirmed by qRT-PCR. The recombinant
virus demonstrated attenuation and protective efficacy
against HON2 AIV &),

The Fiber protein of FAdV is crucial for infection and
pathogenicity. Unlike most FAdV serotypes, FAdV-4
has two Fiber proteins: Fiber-1 and Fiber-2 1. Fiber-2
is closely linked to virulence, with fiber-2-edited
recombinant viruses showing significant attenuation in

SPF chickens %2, Fiber-1, however, directly facilitates
viral infection via its knob and shaft domains interacting
with the CAR homology receptor . Building on
these advancements, further efforts have focused on
targeting additional structural proteins to develop novel
recombinant FAdV-4 viruses with enhanced functionality.

In a study by Mu et al.®, another structural protein,
Fiber-1 of FAdV-4, was targeted to rescue a novel
recombinant virus, FAdV4-RFP_F1, which expresses
a fusion protein of RFP and Fiber-1. To explore the
potential for editing Fiber-1 and to create a live-attenuated
FAdV-4 vaccine or vector, researchers used CRISPR/
Cas9 to modify the region between the tail and shaft at
the 87" amino acid, generating the recombinant virus
FAdV4-RFP_F1 expressing a fusion protein of Fiber-1
and Red Fluorescent Protein (RFP). FAdV4-RFP_F1 was
successfully generated.

In vivo evaluation showed FAdV4-RFP_F1 caused no
clinical symptoms or mortality in SPF chickens, unlike
WT FAdV-4, which caused 100% mortality by four dpi
and severe hepatitis-hydropericardium syndrome. WT
FAdV-4 reached 10° TCIDso/mL in organs, while
FAdV4-RFP_F1 showed no detectable virus by TCIDso.
PCR confirmed early tissue presence, indicating high
attenuation and reduced pathogenicity.

Chickens infected with FAdV4-RFP_F1 produced high
neutralizing antibody levels (mean titer ~27.4) by 21
dpi, unlike controls. Upon WT FAdV-4 challenge, 82%
of control chickens died with severe lesions and high
viral titers, whereas FAdV-4-RFP_F1-infected chickens
showed no symptoms, mortality, or detectable viral titers,
confirming effective protection. The N-terminal domain
of fiber-1 was identified as a potential insertion site for
foreign gene expression 2],

FAdV-C is another species of fowl adenovirus that contains
two fiber genes. Recently, a novel FAdV-C4 strain has been
identified as the cause of hepatitis-hydropericardium
syndrome (HHS) outbreaks in chickens in China, leading to
substantial economic losses in the poultry industry 4142,
Despite its impact, the virology of FAdV-4 remains
poorly understood. Another study aimed to investigate
the distinct roles of FAdV-4 fibers in viral infection using
reverse genetics techniques.

Recombinant FAdV-4 viruses expressing Fiber-1 and
Fiber-2 were developed. Fiber-1 was essential for rescuing
FAdV-4, as no GFP+ foci formed in pKFAV4XF1-GFP-
transfected LMH cells, whereas Fiber-2 was dispensable,
enabling replication in pKFAV4XF2-GFP cells. Cytopathic
effects and GFP signals confirmed virus growth, and
sequencing validated the Fiber-2 mutation. Fiber-1 knob
protein (F1H6) inhibited FAdV-4 infection in LMH cells
by up to 75% at 1-4 ug/mL, while Fiber-2 knob (F2H6)
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had no effect, confirming Fiber-1 as the primary binding
ligand. In chicken embryos, FAdV4-GFP caused 100%
lethality by day 12, while 40% of FAdV4XF2-GFP-infected
embryos survived up to 14 dpi. FAdV4-GFP exhibited
2-3 orders of magnitude higher viral levels in the liver
than FAdV4XF2-GFP ¢,

Vaccination with live attenuated and inactivated vaccines
continues to be the most practical approach to controlling
Newcastle Disease (ND). The naturally avirulent NDV
strain LaSota has been widely used as a live vaccine
globally for over 60 years, demonstrating excellent safety
and stability '], Advances in reverse genetics have
enabled the development of the LaSota strain and other
NDV strains as vectors for expressing foreign antigens,
offering applications in vaccine development and gene
therapy 1%, The NDV LaSota strain was used as a vector
to generate a recombinant NDV virus expressing the full-
length fiber-2 gene from a novel FAdV-4 genotype isolated
in China M. Since unpublished data indicated that live
rLaSota-fiber2, delivered via drinking water or ocular
administration, did not protect against hypervirulent
FAdV-4 challenge, despite offering full protection against
NDYV, the efficacy of rLaSota-fiber2 as a bivalent vaccine
candidate against FAdV-4 and NDV was assessed through
intramuscular administration in another study 7.

The NDV LaSota strain expressing the fiber-2 gene of
hypervirulent FAdV-4 was developed as an attenuated
recombinant vaccine. Single-dose vaccination of 2-week-
old SPF White Leghorn chicks with live or inactivated
rLaSota-fiber2 induced strong antibody responses against
NDV (over 6 log,) and FAdV-4 (over 1.5 OD). The live
vaccine generated higher and earlier titers (over 0.5 OD
for FAdV-4 and over 6 log, for NDV) compared to the
inactivated vaccine (less than 0.5 OD for FAdV-4 and over
2 log, for NDV).

Complete protection was observed with the live vaccine,
while the inactivated formulation conferred 70%
protection against FAdV-4. NDV shedding ceased by day
3 post-challenge in the live vaccine group and by day 6 in
the inactivated group. Both groups showed reduced FAdV-
4 shedding compared to non-vaccinated birds, which
continued shedding until death. The live vaccine induced
higher HI antibody titers and better overall protection 7.

Given the need for vaccines offering dual protection against
FAdV-4 and NDV, other viral pathogens have also been
recombined with FAdV to confer dual immunogenicity.
Co-infections of novel FAdV-4 and vvIBDV have been
observed in farms due to the overlapping susceptible ages
of chickens, resulting in more severe diseases and posing
challengesto the poultry industry 'l Developing a vaccine
providing simultaneous protection against both viruses
is considered essential. In previous research, an artificial

non-pathogenic FAdV-4 strain expressing vvIBDV VP2
was constructed %!, In a recent study, the immunogenicity
of this recombinant virus as an inactivated vaccine was
evaluated.

An inactivated vaccine was developed using the
recombinant FAdV-4 rHN20-vvIBDV-VP2 strain, created
by inserting the vvIBDV VP2 gene into a non-pathogenic
FAdV-4 backbone. The inactivated bivalent vaccine,
containing 10" PFU/mL of virus and stored at —80°C,
induced 100% neutralizing antibody positivity against
FAdV-4 and vvIBDV three weeks post-immunization.
All vaccinated chickens survived FAdV-4 and IBDV
challenges without clinical signs. Histopathology and viral
load analysis at four dpi showed no liver or bursal lesions
in immunized groups, unlike non-immunized chickens,
which exhibited severe hepatic damage and lymphocyte
depletion.

The vaccine effectively inhibited FAdV-4 and vvIBDV
replication, prevented pathological damage, and reduced
environmental shedding. High viral loads were detected
only in non-immunized chickens. Strong neutralizing
antibody responses were observed, with titers exceeding 8
log, for FAdV-4 and nearly 8 log, for IBDV. Derived from
a non-pathogenic strain, the vaccine minimized risks
associated with incomplete inactivation or contamination.
It was suitable as a standalone bivalent vaccine and a
replacement for monovalent and VP2 subunit vaccines.
Identified FAdV-4 genome regions offer potential for
future vaccine development ¢/,

Although several inactivated or subunit vaccines have
been developed against FAdV-4 and DAdV-3, such as the
recombinant viral vector FAdV-4 and inactivated IBDV
vaccine %, there remains an urgent need to develop a
novel bivalent vaccine candidate targeting both FAdV-4
and DAdV-3.

The Fiber-2 protein of DAdV-3 can induce neutralizing
antibodies and be used as an efficient protective
immunogen to offer complete protection against DAdV-
3 infection %71, Based on the previous study, fiber-2-
edited or fiber-2-deleted FAdV-4 is a highly attenuated
and protective vaccine candidate %1, However, a bivalent
vaccine against both FAdV-4 and DAdV-3 is not available.
Previous studies revealed that Fiber-1 of FAdV-4 directly
triggered the viral infection via its shaft and knob domains,
and Fiber-2 of FAdV-4 was identified as a significant
virulent determiner . More recently, it was found that
Fiber-2 of FAdV-4 was not necessary for viral replication
and induction of neutralizing antibody, and fiber-2-edited
or fiber-2-deleted FAdV-4 was a highly attenuated and
protective vaccine candidate %%}, highlighting that fiber-2
can be as an editable or inserting site for generating live-
attenuated recombinant FAdV-4 vaccines against both
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FAdV-4 and other pathogens. Therefore, a recombinant
FAdV-4 expressing Fiber-2 protein of DAdV-3 using
CRISPR/Cas9 and Cre-LoxP systems were generated 1%,

The recombinant virus rFAdV-4-Fiber-2/DAdV-3 replicated
efficiently in LMH cells, reaching a peak titer of 10%°
TCID50/mL. In SPF chickens, it induced high antibody
levels and neutralizing titers against FAdV-4 and DAdV-
3 without clinical symptoms. This study is the first to
generate rFAdV-4-Fiber-2/DAdV-3 using CRISPR/Cas9
and Cre-LoxP. However, its efficacy in ducks and potential
to induce cellular immunity were not tested 1*..

In addition to recombinant vector vaccines from other
viral families, vaccines derived from the same genus, but
different serotypes have also been introduced.

Isolation of multiple FAdV serotypes from the same
diseased bird is common, highlighting the lack of cross-
protection between different serotypes =%, Mixed
infections involving HHS and IBH have also been
observed in field cases ['*). However, there is currently no
commercially available vaccine that targets both FAdV-
4 and FAdV-8b infections. FAdVs from different species
exhibit significant structural and genomic differences.
Previous research has shown that the virulence of FAdV-4
is not dependent on fiber-1, although fiber-1 plays a direct
role in mediating infection by pathogenic FAdV-4 10,
In a recent study, a novel hypothesis was proposed for the
first time: replacing the fiber-1 of FAdV-4 with the fiber of
FAdV-8b. To test this, a chimeric FAdV-4 virus containing
the fiber of FAdV-8b, named rFAdV-4-fiber/8b, was
successfully constructed.

Chickens vaccinated with the inactivated rFAdV-4-
fiber/8b vaccine developed antibodies against FAdV-4
fiber-2 and FAdV-8b fiber, reaching over 1.5 OD and nearly
1.5 OD by the third week, respectively. All vaccinated
chickens survived, while the control group showed 50%
mortality 102 h post-infection. Necropsy confirmed
protection, with vaccinated chickens displaying healthy
organs, unlike unvaccinated ones challenged with FAdV-
4 or FAdV-8b, which exhibited severe lesions, including
liver necrosis and hemorrhages.

qRT-PCR revealed significantly lower FAdV-4 and FAdV-
8b loads in vaccinated chickens, while unvaccinated
ones showed high viral copies (10*-10'?). Vaccinated and
control groups exhibited no lesions, unlike unvaccinated
chickens with severe organ damage, confirming the robust
protective efficacy of the inactivated rFAdV-4-fiber/8b
vaccine.

PCR analysis revealed that viral shedding was minimal
in vaccinated chickens. In the FAdV-8b challenge group,
only 2 of 10 vaccinated chickens shed the virus on day 1
but shedding ceased entirely by day 2. Vaccinated chickens

in the FAdV-4 challenge group showed no viral shedding
throughout the experiment. A single dose provided full
protection against both serotypes 7.,

Recent studies on FAdV-4 vaccines have mainly focused
on inactivated, subunit, and genetically engineered
vaccines, while live FAdV-4 vaccines have not been
extensively studied "%, Live vaccines are typically based
on low-pathogenic or non-pathogenic strains. It has been
reported that three naturally non-pathogenic FAdV-4
strains have been isolated: ON1 (Canada), KR5 (Japan),
and B1-7 (India). However, the protective effectiveness
of these strains against FAdV-4 remains uncertain 7).

The FAdV-4 virulent strain HLJFAd15 (GenBank No.
KU991797) from Heilongjiang, China, caused 100%
mortality in SPF chickens. Sequencing revealed a 1966-
base pair deletion at the genome’s right end, identifying it as
a novel FAdV-4 genotype ['*!I. The hexon of the HLJFAd15
strain was replaced with that of the non-pathogenic ON1
strain, creating the recombinant FAdV-4 strain rHN20,
which maintained similar viral titers to the wild-type
virus but lacked pathogenicity. Chickens immunized with
10° PFU of rHN20 showed strong neutralizing activity
against FAdV-4 at 7 and 14 days post-vaccination. The
intramuscular group exhibited the highest activity (over
6log,) compared to intranasal (6log,) and subcutaneous
(over 4log,) groups. At 7 days, only the 10° and 10° PFU
groups showed neutralizing activity. Post-challenge with
2000 PFU of FAdV-4, vaccinated chickens showed no
clinical symptoms and achieved 100% protection, unlike
the control group, which experienced mortality within
4 days.

High FAdV-4 copy numbers were detected only in the
viscera of dead chickens from the unimmunized challenge
control group. Immunized groups, regardless of route or
dose, showed background levels similar to non-inoculated
controls. The rHN20-based live vaccine provided effective
protection, eliminating the need for antigen purification
and adjuvant addition. Severe hydropericardium and
liver lesions were only seen in challenge controls.
Histopathological analysis confirmed healthy liver
structures in immunized groups, demonstrating the
vaccine€’s efficacy against HHS 7],

Fowl Adenovirus Species D Vaccines

FAdV-11-associated IBH is increasingly reported world-
wide 152151 However, its pathogenesis remains poorly
understood due to limited genome sequences and
technical challenges in manipulating its large genome.
Only 14 complete FAdV-11 genome sequences exist,
with just one being non-pathogenic. A recent study
introduced the first reverse genetics platform for FAdV-
11, offering an efficient tool to study its virulence genes
and develop multivalent recombinant vaccines.



314

Comprehensive Review of Fowl and Duck Adenovirus Vaccines Development

Kafkas Univ Vet Fak Derg

The FAdV-11 reverse genetics platform enables identifying
virulence-associated genes and developing multivalent
recombinant vaccines. ORF11 was found non-essential
for in vitro replication, making it a suitable site for foreign
gene insertion, facilitating future vaccine development 2%,

2. Duck Adenovirus Vaccines

Duck adenovirus includes DAdV-1 and DAdV-2. In
2014, strain CH-GD-12-2014 was isolated in Guangdong
Province, potentially representing DAdV-3 due to
low genetic similarity with DAdV-2. Infected ducks
exhibited yellowish livers with hemorrhagic spots, kidney
enlargement, and bleeding "**. To address the absence of
an effective DAdV-3 vaccine, the VP1 protein of DHAV-
1 was recombined into the DAdV-3 genome, creating a
recombinant virus for dual prevention against DHAV-1
and DAdV-3 1,

The antibody response to DAdV-3 in rDAdV3-VP1-188
and DAdV3 groups peaked at 4 weeks post-vaccination
(over 3 OD values) and declined by 7 weeks. No
antibodies were detected in the negative control group.
Ducks in DAdV3 and rDAdV3-VP1-188 groups showed
no significant histopathological damage 1*!.

3. DNA Vaccines
Fowl Adenovirus Species C Vaccine

A subunit vaccine using recombinant Fiber2 protein from
the hypervirulent FAdV-4 GZ-QL strain and a Fiber2
DNA vaccine were developed. Both induced significant
Fiber2-specific antibody levels (rFiber2 subunit: 50 pg at
24 pg/mL, 100 pg at nearly 26 pg/mL, 150 ug at 22 pg/
mL; Fiber2 DNA vaccine: 20-22 pg/mL). The rFiber2
subunit vaccine achieved higher efficacy (80-100%)
compared to the Fiber2 DNA vaccine (50-60%) and a
commercial inactivated vaccine (80%). No significant
histopathological changes were observed .

CHALLENGES TO FADV VACCINE
DEVELOPMENT

Live-attenuated fowl adenovirus (FAdV) vaccines face
limitations in efficacy, safety, and production. Long-
term effects on layers remain unassessed, with concerns
about potential viral shedding through cloaca and
gizzard routes, raising questions about their safety and
effectiveness in pullets ¥, Small sample sizes in studies
limit generalizability, highlighting the need for further
exploration of alternative vaccination routes and dosages
to optimize immunization protocols .

The lack of vaccine production from propagated virus
strains, as noted by Ugwu et al., raises concerns about
genetic stability, including point substitutions in key
viral genes. The absence of details on cell requirements

and bioreactor conditions complicates large-scale
vaccine production. The lack of vaccine production
from propagated virus strains, as noted by Ugwu et al.l*),
raises concerns about genetic stability, including point
substitutions in key viral genes. The absence of details on
cell requirements and bioreactor conditions complicates
large-scale vaccine production. Some studies reported
reduced pathogenicity in vaccinated chickens, but liver
and tissue abnormalities persisted, along with viral
shedding and suboptimal antibody responses, especially
following intramuscular administration .

Undefined vaccine formulations and unspecified
commercial vaccine types in studies hinder the comparison
and assessment of vaccine effectiveness °l. Further
research is needed to enhance vaccine development
by improving immunogenicity, understanding cellular
immune responses, and refining production methods.

Live-attenuated and inactivated FAdV vaccines face
limitations, including insufficient cellular immunogenicity
research and the need to explore alternative vaccination
routes, adjuvants, and doses. For example, Wu et al.l**!
suggest further research on cross-protection against
different FAdV serotypes, while Ugwu et al.*®) emphasize
the need for alternative adjuvants beyond Montanide.
Similarly, Mohamed Sohaimi et al.?* note that the
potential of adjuvants in enhancing cellular and humoral
immunity has yet to be fully explored, particularly for
inactivated FAdV-8b vaccines.

Concerns about the limited duration of vaccine efficacy
studies, such as those monitoring efficacy for only four
weeks Y and the failure to assess the impact of booster
doses on immune responses ¢, also remain prominent.
While some studies show improvement in viral shedding
and body weight with boosters, more comprehensive
investigations are needed to determine their long-term
impact.

Thelack of research on various adjuvants and formulations
is another key limitation. Mehmood et al. ! emphasize
the need to compare adjuvants and determine optimal
vaccine doses based on age and regimen. They highlight
the importance of exploring alternative cell sources for
vaccine production, assessing cross-protection against
multiple serotypes, and developing more effective
inactivation methods 7.

Many studies stress the need for field trials to confirm
vaccine efficacy, highlighting the importance of optimizing
formulations, dosages, and including cellular immunity,
varied adjuvants, and diverse regimens for effective FAdV
vaccine development 652,

Developing recombinant subunit vaccines for FAdV
faces challenges, notably the insufficient evaluation of
cellular immune responses, including T-cell activation
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and cytokine production, limiting insights into vaccine-
induced immunity 1221536060671 Additionally, several
studies did not assess the potential impact of different
adjuvants, highlighting the need to explore alternative
adjuvant formulations to enhance vaccine efficacy 37,

Several studies observed adverse clinical signs such as
dullness, ruffled feathers, liver changes, and gastrointestinal
issues post-vaccination, suggesting potential safety concerns
that should be addressed in future research [*°157:60.66],
Mortality rates, although low, were reported in some groups,
raising concerns about vaccine-associated risks 14,
Moreover, viral shedding and histopathological lesions
were still detected in vaccinated birds, indicating that
vaccine formulations and delivery methods might require
refinement to eliminate these issues 473,

Vaccine efficacy concerns exist between chicken breeds,
such as layer SPF and broilers, due to immune response
variations impacting effectiveness . Many studies
focused on short-term effects, lacking data on long-
term immunity or humoral response durability [0+
Some vaccines require multiple doses for optimal
protection, posing challenges for large-scale vaccination
programs 47731,

Alternative vaccination routes, such as oral, spray, or
intramuscular, require further exploration alongside
optimal dosing strategies and dose comparisons ['**l.
Cross-protection against different FAdV serotypes remains
underexplored, necessitating further research for broader
vaccine coverage '®“''7). Identifying specific mutations
in virulent FAdV-4 strain domains linked to unique
immunogenic properties also warrants investigation %,

Finally, the small sample sizes used in some studies limit
the generalizability of the findings and call for larger-scale
trials and extended monitoring to understand vaccine
efficacy and safety under real-world conditions %71,

The limitations of recombinant vector vaccines against
various FAdV serotypes, as discussed in multiple studies,
highlight several common challenges and areas for further
investigation.

1. Inactivation and Antigenic Alterations: The use of
2% formaldehyde for inactivating recombinant viruses,
such as FAdV-1 and DAdV-3, may alter viral antigens
and reduce immune response efficiency, raising
concerns about the impact of inactivation methods on
vaccine integrity and protective efficacy .

2. Unexplored Immune Responses: Many studies did
not assess humoral or cellular immunity, which is
crucial for a comprehensive understanding of vaccine
efficacy 2. The lack of investigation into cellular
immune responses, especially in live vaccine studies,
is a common limitation across various serotypes,

including FAdV-4 and DAdV-3 P71 Additionally,
the long-term protection rate in chickens was not
consistently evaluated "), and more studies are needed
to measure the effectiveness of these vaccines in
poultry.

. Lack of In Vivo Testing and Protection in Chickens:

Many recombinant vector vaccines have not been
tested in chickens ¥, with some studies lacking data
on protection rates or immune responses 2841421,
The ability of FAdV-4 Fiber-1 to induce neutralizing
antibodies requires further investigation, along with
the roles of Fiber-1 and Fiber-2 in protection against
FAdV-1 1. The absence of in vivo data emphasizes the
need for additional research to confirm vaccine and
antibody efficacy in chickens ¢\,

. Cost and Production Challenges: The preparation

of recombinant vaccines, mainly inactivated ones, is
costly %, which raises concerns about the scalability
and cost-effectiveness of these vaccines for widespread
use, suggesting that production methods need
optimization to reduce costs and improve feasibility.

. Optimization of Administration Route and Dose:

variations in vaccination doses and routes, such
as oral or subcutaneous delivery, have not been
sufficiently tested in many studies, limiting the
potential for improving vaccine administration and
effectiveness (254662681,

. Viral Replication and Protection Levels: While

some vaccines have demonstrated replication in vitro,
their performance in vivo has been inconsistent. For
example, FAdV-4 vaccines have shown slow replication
in cell cultures, which may hinder their protective
capabilities in vivo ). The effectiveness of vaccines
in inducing robust immune responses and achieving
full protection against FAdV infections in chickens
remains a key area for further exploration since some
studies reported incomplete protection ¢4,

. Co-infection and Cross-Protective Efficacy: The

impact of co-infections, such as FAdV-4 combined
with IBDV or other poultry pathogens like NDV, has
not been thoroughly evaluated, despite the potential
for co-infection to alter vaccine efficacy (%770,
Furthermore, vaccines developed for one serotype may
not offer cross-protection against others, as shown in
studies of FAdV-8a and FAdV-4 vaccines 7.

. Safety Concerns: Some recombinant vaccines

have raised safety concerns, including minor liver
inflammation and potential viral replication in tissues
(25771 Additionally, the risk of reversion to virulence in
recombinant live attenuated vaccines ¥ necessitates
further studies to assess long-term safety and stability.
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9. Lack of Molecular Investigation Towards Pathogenicity
and Mechanism of Neutralization: For instance, the
molecular basis of pathogenicity and the mechanism
of virus neutralization FAdV-4 and 8b remain
poorly understood, highlighting the need for further
investigation 12676,

10. Geographical and Environmental Considerations:
Most studies often focused on specific strains or
geographical regions, limiting the generalizability
of findings. Broader investigations are necessary
to account for diverse environmental factors and
interactions with other pathogens that influence
vaccine efficacy.

11.Maternal Antibodies and Field Conditions: The
impact of maternal antibodies and field conditions
on vaccine performance has not been thoroughly
addressed. These factors can significantly influence
the immune response and effectiveness of vaccines in
commercial poultry operations.

Recombinant vector vaccines for FAAV show promise
but have challenges, such as preserving antigen integrity,
testing adjuvants and vaccination methods, and evaluating
immune responses. In vivo testing is crucial for safety
and efficacy. Future research should focus on improving
production, cross-protection, and addressing safety
concerns to enhance vaccine effectiveness for poultry.

FUTURE DIRECTIONS TOWARDS
FowL ADENOVIRUS VACCINE
DEVELOPMENT

Future FAdV vaccine development focuses on targeting
multiple serotypes, viral components, and innovative
methods. Genomic studies on FAdV-9 suggest non-
essential genes like ORF1 and ORF19 could be used
for foreign gene expression, enhancing FAdV-based
vaccines or gene therapy tools ['*>!*¢], Fiber gene variations
in FAdV-8b indicate potential for fiber-based vaccines 2,
while FAdV-4’s unique use of shorter fiber and CAR
receptor provides opportunities for targeted vaccine
development [12¢),

Multi-epitope vaccine strategies, incorporating T and
B cell-activating peptides, offer cost-effective, faster
production than traditional vaccines #1513 For FAdV-
4, studies on fiber-1 and penton show they are vital for
replication and immune response, with complex roles in
pathogenicity, suggesting future vaccine potential #8150,
Host-virus interaction studies highlight Hsp70 and
DnaJC7 as modulators of FAdV-4 replication ). miRNA-
based strategies, like gga-miR-181a-5p, show promise in
antiviral responses and vaccine development 1),

A study showed FAdV-4 Fiber-1, particularly its shaft
and knob domains, conferred superinfection resistance
against FAdV-8b in LMH cells, unlike FAdV-8b’s hexon,
penton, or Fiber proteins. Knocking out the CAR receptor
suppressed FAdV-8b replication, but CAR is not its
primary receptor. These findings suggest targets for
controlling FAdV-4 and FAdV-8b infections . In duck
adenovirus (DAdV), Fiber-2 of DAdV-3 shows potential
as a subunit vaccine, with epitope 108LALGDGLE115
identified ¢\,

CONCLUSION AND
RECOMMENDATION

Future vaccination strategies should account for
genotype, bird age, and microbiota diversity. Large-
scale application of developed vaccines is essential
to assess their effectiveness or need for optimization.
The transfer of passive immunity to progeny warrants
further investigation. Integrated research between
vaccinologists and immunologists is crucial to better
understand cell-mediated immune responses and improve
vaccine efficacy (11,

HiGHLIGHT KEYPOINTS

FAdV and duck adenovirus are major pathogens in
poultry and necessitates an effective vaccine strategy
against the disease outbreak in poultry farms.

Recent advances in the development of various
vaccines against numerous avian adenovirus species,
such as FAdV species A-E and Duck adenovirus 1 and
3 were discovered, in addition to the challenges that
the conducted studies faced and the future aspects that
must be focused on towards the production of effective
vaccines.

Multiple studies show that capsid proteins, especially
fiber, provide the highest protection rates and the least
viral shedding and clinical signs in poultry.

Significant discrepancies exist among studies
evaluating vaccines for poultry due to variations
in bird type, age, challenge strains, vaccine strains,
dosage, administration frequency, small sample sizes,
and unexamined immune responses or pathogenic
mechanisms.

Future studies should prioritize testing vaccine
candidates under real-life conditions, exploring FAdV
infection mechanisms, and assessing passive immunity
transfer to progeny post-immunization.
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