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Introduction 
Global warming is a major concern for the livestock 
industry worldwide [1]. High ambient temperatures and 
relative humidity cause heat stress by limiting the capacity 
of livestock to dissipate heat into their surrounding 
environment [2]. Decreased feed intake due to heat stress 
in all livestock species leads to a decrease in egg, milk and 
meat production [3,4]. Heat stress related economic loss is 
high in the dairy industry. Moreover, heat stress reduces 
the immune response against diseases in cattle [5]. Intensive 
selection has been applied for many years to increase the 
productivity of livestock. However, these high yielding 
breeds may be more susceptible to heat stress as they 
produce higher metabolic heat [6]. The development of a 
high-yielding breed of cattle that can tolerate heat stress 
has been an important goal of the researchers, as extreme 
temperatures are predicted to occur more frequently [7]. 
Heat stress also reduces of reproductive success, animal 
welfare and product quality. Heat stress causes a decrease 
in the content of milk fat and protein and changes in the 
meat colour and water-holding capacity [8-10].

Cattle breeds show genetic variation in thermotolerance, 
some being more tolerant than others [11]. This diversity 
may be due to many different biological mechanisms such 
as cellular, morphological (coat structure), behavioral 
and neuroendocrine systems. However, the molecular 
mechanism of environmental adaptation has not been fully 
elucidated today [12]. The genes involved in mammalian 
coping with heat stress have been investigated for decades 
and many candidate genes have been reported [13-15].  The 
main biomarker of heat stress in cattle is heat shock proteins 
(HSP). HSPs are highly conserved protein superfamily 
that are activated in many different stress situations 
such as oxidative stress, heat stress, injury, etc. HSPs are 
important for the maintenance of protein homeostasis. 
HSPs increase the ability of the cell to survive by reducing 
the accumulation of damaged or abnormal polypeptides 
within cells [6]. They restore misfolded proteins, direct 
irreparable proteins to the degradation pathway, and 
prevent protein aggregation and apoptosis [16]. 

HSF1, the major coordinator in the regulation of the 
heat stress response (HSR), plays a role in physiological 
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ABSTRACT

Turkish Grey cattle (B. taurus) are the only native cattle breed of Türkiye’s Thrace and 
Western Anatolia regions. They can spend the whole year as free herds, including the 
hottest and coldest months, and can survive, feed, and reproduce without any human 
intervention. Therefore, Turkish Grey cattle are of interest for genetic marker studies 
on heat stress tolerance. This study was aimed to identify genetic polymorphism in the 
DNA binding domain (DBD) encoding region of the heat shock transcription factor 1 
(HSF1) gene in Holstein (n: 50) and Turkish Grey (n: 50) cattle. It was determined that 
the 121 amino acid long sequence encoded by the first three exons of the HSF1 gene 
was the same in Turkish Grey and Holstein cattle. Two intronic and one synonymous 
SNPs were identified in Turkish Grey (rs719296338, rs522980029, rs17880386) and 
one inronic SNP (rs17870386) in Holstein cattle by DNA sequencing. These SNPs were 
searched in the Bovine Genome Variation Database (BGVD). Interestingly, according 
to BGVD, rs522980029 was conserved in B. indicus but absent in B. taurus. Moreover, 
the rs719296338 locus is monomorphic in western European and Eurasian taurine but 
is polymorphic in East Asian taurines and B. indicus. The results support the view that 
B. indicus is genetic introgression into B. taurus cattle in Anatolia. This hybridization 
may have contributed to Turkish Grey cattle ability to adapt to harsh environmental 
conditions and heat stress. 
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processes such as metabolism, development and aging 
in non-stress situations [17]. HSR is also triggered by 
different stress factors such as infectious diseases, 
heavy metals, oxidative stress, in addition to elevated 
temperature [11,18,19]. HSF1 induces the transcription of 
heat shock proteins (HSP), also known as stress proteins, 
by binding to heat shock elements (HSE). HSE is specific 
DNA sequences (nGAAn) found in the promoter regions 
of HSPs [20]. HSF1 basically consists of four functional 
domains: trimerization domain, DNA binding domain 
(DBD), regulatory domain, and transcriptional activation 
domain [21]. HSF1, which is a monomeric conformation 
(inactive form) in the cytoplasm in the absence of stress, 
trimerizes under stress and migrates from the cytoplasm 
to the nucleus. Trimeric HSF1 has the ability to bind to 
DNA. However, it can upregulate HSP transcription after 
undergoing phosphorylation [22]. DBD plays a key role in 
HSF1 recognizing and binding to HSEs [23]. It has been 
reported that amino acid substitutions in DBD may cause 
physicochemical changes that alter the ability of HSF1 to 
bind to HSEs [24]. 

The HSF1 gene is located on chromosome 14 in cattle. It 
contains 13 exons and encodes the HSF1 protein contains 
515 amino acids. The DBD is the best conserved domain 
of the HSF1 protein in cattle. The first three exons of the 
HSF1 gene encode the 106 amino acid long DBD between 
amino acids 15 to 120 of the HSF1 protein [24].

Native cattle breeds are an important target for genetic 
marker research. Unlike cultivated breeds that go through 
rigorous breeding programs, they can carry more genetic 
variations associated with survival and adaptation to 
different environmental conditions. Turkish Grey cattle 
are the only native cattle breed of Türkiye’s Thrace and 

Western Anatolia regions. This breed can spend the 
whole year as free herds, including the hottest and coldest 
months, and can survive, feed, and reproduce without any 
human intervention [25]. Turkish Grey cattle are highly 
resistant to heat, cold and parasites and can be fed low 
quality feeds. It is preferred for meat and milk production 
in rural areas due to its very low breeding costs [25]. Holstein 
cattle are very vulnerable to heat stress and parasites [26]. 
Identification of genetic variations that confer superiority 
in stress tolerance in Turkish Grey cattle may provide the 
opportunity to apply them in breeding strategies such as 
marker assisted selection for cattle production systems. 
This study was designed to identify variations in the DNA 
loci encoding the DBD of the HSF1 protein in Turkish 
Grey and Holstein cattle. 

Material and Methods
Sample Collection

Tissue samples were collected from 100 animals in two 
different breeds of B. taurus; Holstein cattle (n = 50) 
and Turkish Grey cattle (n=50). Holstein and Turkish 
Grey cattle tissue samples were collected from randomly 
selected carcasses after slaughter in the Thrace region 
of Türkiye. The muscle tissue samples were obtained 
from the neck of each carcass. Because the samples were 
collected on different dates, cattle samples from different 
farms were included in the study. The samples were stored 
at -20°C until molecular genetic studies.

Molecular Genetics Analysis

DNA extraction from muscle and blood tissue samples 
was performed using the Hybrigen (MG-DHDNA-01) 
DNA extraction kit. The two primer pairs were designed 

Fig 1. The loci amplified (458 bp and 718 bp) by the primer pairs on the cattle chromosome 14.  
The encoded amino acid sequences first three exons of the cattle HFS1 gene are written in red letters

Table 1. Primer sequences, amplification regions and PCR fragment lengths

Primers Name Primer Sequences Amplification
Region

PCR Product 
(bp)

Primer E1
F: GTCGAACAACGCCCTCCAA 633178 - 633196

458
R: CTTTGCGGTCGCTACCTCCT 633635 - 633616

Primer E23
F: ACAGGCACCTGGTAGAAAGC 618336 - 618355

718
R: TGAAAACTGTCACCCAGCCT 619053 - 619034
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using NCBI primer blast (Table 1). The primer pair E1 
amplifies exon 1 and partially the 5ˈ UTR and intron 1 
regions. The primer pair E23 amplifies exon 2, intron 2, 
exon 3 and partially intron 1 and intron 3 regions. The 
HSF1 gene regions amplified by the primers are shown in 
Fig. 1. 

PCR amplifications were performed by Proflex thermal 
cycler (Applied Biosystem). The PCR analyses were 
performed in a total volume mixture of 25 μL consisting 
of 12.5 μL of PCR mastermix (K0171, Thermo Scientific), 
5 μL of gDNA, 1 μL (10 pmol) of each primer and 5.5 μL of 
nuclease free water. Sequencing reactions were carried out 
using a DTCS Quick Start sequencing kit and GenomeLab 
GeXP Genetic Analysis System (Beckman Coulter, USA). 
The DNA sequences were analyzed by BioEdit v7.2.5 
(Hall, 1999) and Chromas v2.6.6 (Technelysium Pty Ltd, 
ASTL).

Statistical Analysis

The frequencies of SNPs in cattle breeds worldwide were 
examined using the Bovine Genome Variation Database 
(BGVD) [27]. The BDGV includes genomic variation data 
(SNP, indel, CNV) for 432 samples from 54 modern cattle 
breeds worldwide. Furthermore, the 54 cattle breeds can be 
grouped into six early differentiated ancestral populations 
(Indian indicine, Chinise indicine, East Asian taurine, 
European taurine, Eurasian taurine, Africa taurine). 
Distribution patterns of these variations can be obtained 
using dbSNP ID. Hardy Weinberg equilibrium (HWE) 
was tested using the HardyWeinberg v1.6.3 package [28] in 
the R platform.

Results
The exon 1, 2 and 3 loci were amplified in 100 cattle 
samples using the designed primer pairs (Table 1). The 
DNA sequencing results were aligned and assembled with 
v7.2.5 (Hall, 1999). It was determined that the 121 amino 
acid long sequence encoded by the first three exons of the 
HSF1 gene was the same in Turkish Grey and Holstein 
cattle (Fig. 1). However, three SNPs were detected in 
intron 1 (rs719296338), exon 2 (rs522980029) and intron 
3 (rs17880386) (Fig. 2). While rs7192966338 A>G and 
rs522980029 C>T were detected in Turkish Grey cattle, 
they were not observed in Holstein cattle. The rs17880386 
A>G was identified in both breeds (Table 2). All SNP 
frequencies were in Hardy Weinberg equilibrium (HWE) 
in Turkish Grey and Holstein cattle (Table 2).

The three SNPs (rs719296338, rs522980029, rs17880386) 
were screened in BGVD and map plots were generated 
for each SNP (Fig. 3). Allele frequencies were obtained 
for each SNP according to the ancestral populations. The 
rs719296338 A>G was highly conserved in B. indicus but 
absent in European taurine, Eurasian taurine and African 
taurine. The frequency of the G allele was 0.014 in East 
Asian taurine (Fig. 3-A). rs522980029 C>T was absent 
in B. taurus but conserved in B. indicus. The T allele 
frequency was 0.091 in the Indian indicine and 0.684 in 
the Chinese indicine (Fig. 3-B). The rs17880386 A>G 
locus was polymorphic in both B. taurus and B. indicus 
according to the BGVD database. The G allele frequency 
was higher in African taurine, Chinese indicine and 
Indian indicine, and the A allele frequency was higher in 
other B. taurus (Fig. 3-C).

Fig 2. Electropherogram of DNA sequencing results of three SNPs identified in cattle HSF1 gene
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Discussion
Anatolian native breeds, relatives of the first domesticated 
cattle, are considered the ancestors of many European 
breeds [29]. One of them, Turkish Grey cattle, also 
known as Plevne breed in Türkiye, originated from the 
B. taurus primigenius [30]. Although Turkish Grey cattle 
was a preferred breed by farmers in Thrace and Western 
Anatolia in the last century, unfortunately, it is under 
threat of extinction recently. Turkish Grey breeds show 
high tolerance to cold and heat and high resistance to 

ecto- and endoparasites [29,31]. They are preferred by poor 
farmers due to their low breeding costs in the Marmara 
region in Türkiye [32]. Due to their very high adaptive ability 
to survive under harsh environmental conditions [33], 
they are an interesting target for the identification of 
genetic variants associated with thermotolerance.

Thermotolerance in cattle is a quantitative trait under 
the influence of multiple genes [34]. Susceptibility to heat 
stress varies according to genetic potential, species, 
breed, nutritional status, life stage and body size. Dairy 

Table 2. Allele and genotype frequencies of three SNPs identified in HSF1 gene in Turkish Grey and Holstein cattle

SNP/Breed Genotype Frequencies Alleles Frequencies HWE
P value

rs719296338 AA AG GG A G

Turkish Grey 0.580 0.320 0.010 0.740 0.260 0.234

Holstein 1.000 0.000 0.000 1.000 0.000 -

rs522980029 CC CT TT C T

Turkish Grey 0.620 0.340 0.040 0.790 0.210 0.861

Holstein 1.000 0.000 0.000 1.000 0.000 -

rs17870386 AA AG GG A G

Turkish Grey 0.240 0.580 0.180 0.530 0.470 0.246

Holstein 0.780 0.220 0.000 0.890 0.110 0.382

Fig 3. Allele frequency distribution of rs719296338 (A), rs522980029 (B) and rs17870386 (C) in six 
ancestral cattle groups according to Bovine Genome Variation Database and Selective Signatures (BGVD)
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cows are more vulnerable to heat stress than beef cattle. 
B. indicus breeds and their crosses are better adapted to 
high environmental temperatures than B. taurus [1,35,36]. 
Traditional breeding methods to improve thermotolerance 
in cattle have not achieved the expected success. Therefore, 
genetic marker assisted selection methods can be used to 
increase the efficiency of traditional selection methods [37]. 

Maintaining protein homeostasis is essential for the 
survival of eukaryotic cells. Under stress conditions, 
proteostasis is dependent on HSR, a cytoprotective 
mechanism. HSR is triggered by HSF1 upregulating the 
transcription of a group of chaperones. These chaperones 
called HSPs, support cell survival by preventing the 
agglutination of misfolded or defective proteins. HSF1 
upregulates the transcription of HSPs by binding to specific 
sequences called HSEs in their promoter region. The fact 
that HSF1 expression is higher in cattle in summer than in 
winter and autumn [38] indicates its relationship with heat 
stress. The SNPs in the HSF1gene have been reported to be 
related to heat tolerance in Chinese indigenous cattle [13], 
Chinese Holstein cattle [39,40] and Angus cattle [41].

In this study, the DBDs of HSF1 protein of two cattle 
breeds with different thermotolerance capacities were 
determined to have the same amino acid sequence (Fig. 1). 
However, two intronic and one synonymous SNPs were 
detected at the analyzed loci. Three SNPs were observed 
in Turkish Grey cattle, which is known to have a higher 
adaptive ability, and one SNP was observed in Holstein 
cattle. Genetic diversity provides important information 
about both the evolutionary past and future of a species [42]. 
Homozygosity increased (decreased genetic diversity) in 
the Holstein population as a result of intensive selection 
and inbreeding. Homozygosity is generally detrimental to 
populations [13,43] and may have increased vulnerability to 
changing environmental conditions in Holstein cattle.

The synonymous SNP rs522980029 C>T in exon 2 of the 
HFS1 gene is located at position 618.972 on chromosome 
14. It causes an AGC-AGT substitution at the codon 
40 encoding the serine residue of the HSF1 protein. All 
three genotypes were identified in Turkish Grey cattle 
and the genotypic frequencies of CC, CT, and TT were 
0.620, 0.340, and 0.040, respectively. The C>T locus was 
monomorphic for Holstein cattle, only the CC genotype 
was observed (Table 2). Interestingly, based on the BGDB 
distribution models, the variation rs522980029 C>T was 
absent in B. taurus but conserved in B. indicus. T allele 
frequency was 0.091 in the Indian indicine and 0.684 in 
the Chinese indicine (Fig. 3-B). 

The rs719296338 A>G in the intron 1 in the HSF1 gene 
is located at position 633,222 on chromosome 14. Two 
alleles and three genotypes (AA, AG, GG) were observed 
for the rs719296338 in Turkish Grey cattle. Homozygote 

AA (0.580) had the greatest frequency in these genotypes, 
and homozygote GG (0.010) had the lowest frequency. 
The A allele frequency was determined as 0.740 and the G 
allele frequency as 0.260. The rs719296338 A>G locus was 
monomorphic for Holstein cattle, only the AA genotype 
was observed (Table 2). The rs719296338 A>G was 
screened in the BGVD database. It was highly conserved 
in B. indicus but absent in European taurine, Eurasian 
taurine and African taurine. According to BGDB, the 
frequency of the G allele was 0.295 in Indian indicine, 
0.947 in Chinese indicine, and 0.014 in East Asian taurine 
(Fig. 3-A). 

The rs17870386 A>G in the intron 2 in the HSF1 gene 
is located at position 618.721 on chromosome 14. This 
variation was observed in Turkish Grey and Holstein cattle. 
While AA (0.240), AG (0.580), GG (0.180) genotypes were 
determined in Turkish Grey cattle, GG genotype was not 
determined in Holsteins cattle. The genotypic frequencies 
of AA and AG in Holstein cattle were 0780 and 0.220, 
respectively (Table 2). This locus was polymorphic in both 
B. taurus and B. indicus according to the BGVD database. 
The G allele frequency was higher in African taurine, 
Chinese indicine and Indian indicine, and the A allele 
frequency was higher in other B. taurus (Fig. 3-C). 

These results suggest that there may be a relationship 
between Turkish Grey cattle and B. indicus. Similar 
results were found in previous studies examining casein 
gene polymorphisms, and it was reported that genetic 
introgression of B. indicus into Turkish Grey cattle [31,44]. 
Anatolia, one of the centers where cattle were first 
domesticated, is accepted as a center of significant 
introgression with B. indicus [45,46]. It has been suggested 
that Mesopotamia suffered from prolonged drought as a 
result of significant climatic changes around 4000-3000 
years before present [46,47]. It is thought that ancient herders 
may have brought arid-adapted B. indicus populations 
into the Near East at this time [48].

In order to provide food for the growing world population, 
it is necessary to have cattle breeds that can cope with the 
negative effects of global warming. In terms of genetic 
and physiological adaptability, native cattle breeds are 
superior to cultivated cattle breeds [26,49]. The study of 
cattle breeds that respond differently to heat stress can 
provide very important information to elucidate the 
molecular mechanisms of adaptation in highly adaptable 
cattle breeds [50]. SNPs can alter the gene expression trans-
criptionally and posttranscriptionally and missense SNPs 
may affect the functionality and stability of proteins [24]. 
SNPs may cause disruption in the program of biochemical 
adaptive responses [13,41]. 

Identification of SNPs in genes involved in thermo-
regulation may provide important data for marker assisted 
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selection. The genetic variations found in the Turkish Grey 
cattle, which has high adaptability to harsh environmental 
conditions, can have the potential to be used as molecular 
marker candidates in future studies.
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