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Abstract
The logistic regression is a popular method to model the probability of a categorical outcome given as a dependent variable. However, the 
possibilistic logistic regression can be preferred instead of classical logistic regression when the dependent variable has uncertainity. The aim of 
this study is to use the possibilistic logistic regression on animal husbandry examining the theoretical foundations of the method based on fuzzy 
logic approach. A total of 90 cows were enrolled in the study and the average milk yield in 305 days was predicted by animal’s weight, breed of 
the animal, age in lactation, number of milkings per day and the milking seasons of cows belonging to different breeds. The Mean Degree of 
Memberships (MDM) and the Mean of Squared Error (MSE) indices were calculated to decide the goodness of fit of the model. The index values 
were found as MDM=0.896 and MSE=4.871, respectively. It was shown that the model is fit and is succesfull to predict the average milk yield. 
It can be concluded that the model can provide the businesses on lactation milk yield production an efficient and accurate prediction results.
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Possibilistic Lojistik Regresyon Analizi İle Laktasyon Süt Verimi 
Tahmini

Öz
Lojistik regresyon analizi, bağımlı değişken olarak verilen özelliğin kategorilerini tahmin etmek için kullanılır. Ancak, bağımlı değişken belirsiz 
olduğunda klasik lojistik rgeresyon yerine posibilistik lojistik regresyon yöntemi tercih edilebilir. Bu çalışmanın amacı, süt sığırcılığında teorik 
altyapısı ile birlikte bulanık mantık yaklaşımı temelli posibilistik lojistik regresyon yöntemini kullanmaktır. Çalışmaya toplam 90 inekten elde 
edilen bilgiler dahil edildi ve hayvanın ağırlığı, hayvanın ırkı, hayvanın laktasyon yaşı, günlük sağım sayısı ve sağım mevsimi bilgileri kullanılarak 
ortalama süt verimi tahmin edildi. Modelin yeterliliğine karar verebilmek için ortalama üyelik derecesi (MDM) ve hata kareler ortalaması (MSE) 
indeks değerleri hesaplandı. İndeks değerleri sırasıyla MDM=0.896 ve MSE=4.871 olarak hesaplandı. Bu değerlere göre modelin uyumunun iyi 
olduğuna karar verildi.  Bulgular, modelin laktasyon süt verimini tahminlemede etkin ve güvenilir sonuçlara sahip olduğunu göstermektedir.

Anahtar sözcükler: Bulanık lojistik regresyon, Laktasyon süt verimi, Minimizasyon, Olabilirlik oranı, Uyum kriterleri

IntroductIon

Classical set theory precisely determines the boundaries 
of sets and the properties of the elements belonging to 
the set. Each element in the set belongs to a set or not. 
Partial membership is never allowed. The boundaries 
of any set to be formed in natural life and the general 
characteristics of the elements that will form this set 
cannot always be determined precisely. Because of the 
uncertainties in the experiences, feelings and thoughts 

of the experts, their decisions contain an ambiguous 
language [1]. The question of which criteria and methods 
would be more accurate to use for more accurate estimation 
of the yield values of animals and for reliable diagnostic 
procedures causes disagreements among experts and leads 
to doubtful decisions. For example, experts who want to 
classify farm animals according to their milk, meat yields 
use linguistic expressions such as “low milk yield”, ”high 
meat yield”, ”sick or not sick”. These linguistic expressions 
represent uncertainties belonging to experts [2,3]. It is not 
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a correct choice to apply classical set theory in situations 
where the knowledge related to the experiences, feelings 
and thoughts of expert are valid [4]. Because these situations 
can be very difficult to model since they contain uncertainty. 
In addition, many scientists state that the source of the 
uncertainties is the inability to provide the sensitive 
devices required for measurement or the measurement 
of erroneous efficiency values due to the use of devices 
developed according to different criteria or misdiagnosis. 
In these cases, estimates, classifications and diagnosis 
processes become questionable because the assumptions 
required for the application of classical statistical methods 
cannot be provided [2]. Various theories are used to measure 
and evaluate uncertainty. Among those theories, probability 
theory and statistical methods are the preferred methods 
to model uncertainty [5]. However, many uncertainties 
encountered in daily life cannot be explained with 
randomness. Probability theory and statistical methods 
used to express uncertainties numerically may be inadequate 
in measuring nonrandom uncertainties [6]. These situations 
have led researchers to the idea that it is necessary to 
combine fuzzy sets and statistical theories. Therefore, 
fuzzy methods based on Zadeh’s fuzzy set theory play a 
very important role in expressing qualitative expressions 
in human thought numerically in order to make more valid 
and reliable analyzes [1,7]. Fuzzy logistic regression analysis 
is one of the results of this combination and is used in cases 
where the assumptions of the classical logistic regression 
analysis method cannot be achieved. It can also be used 
if there is naturally uncertainty in observation values or 
relationships [8]. Since the approach takes into account 
“probability” rather than “probabilistic” errors, the error 
terms are distributed into fuzzy coefficients [9,10]. Studies 
conducted with fuzzy regression analysis approach are 
generally based on the applications of linear models. There 
are very few studies on nonlinear models. 

The aim of this study was conducted to examine the 
theoretical foundations of possibilistic logistic regression 
analysis technique based on fuzzy logic approach and 
its application in animal husbandry, which can provide 
solutions to fuzzy situations. In order to estimate its model 
parameters, the applicability of the Diamond’s Possibilistic 
method in animal husbandry proposed by Pourahmad et 
al was discussed for in this study.

MaterIal and Methods

Ethical Statement

Data collection with the animal care and breeding practices 
from enterprise were used in this study in compatible with 
animal welfare rules stated in Article 9 in government law 
in Turkey (No.5996).

Materials

The material of the study consisted of 2005 milk yield records 

of 90 randomly selected cows from 220 cows of different 
breeds (Holstein Friesian, Brunette, South anatolian red, 
Cross breed) raised in a private farm. In order to estimate 
the likelihood values of average milk yield (Yi) (kg) values 
in a lactation period with minimum error, values of 
independent variables such as the milk yield of cows in 
lactation (X1), weight (X2), breed (X3), age in lactation (X4), 
number of milkings per day (X5) and milking season (X6) 
were used as material. In addition, the Mean Degree of 
Memberships (MDM) and Mean of Squares Errors (MSE) 
indices were used to decide the adequacy of the model 
created. 

Possibilistic Logistic Regression Analysis Model

Logistic regression model is the most commonly used 
regression model in cases where the dependent variable is 
categorical [11]. Logistic regression analysis is preferred when 
the relevant dependent variable consists of categories such 
as “low efficiency - high efficiency”, “sick - not sick”. Fuzzy 
logistic regression analysis approach is a regression method 
based on fuzzy set theory, and it is a fuzzy approach used 
to analyze the uncertainties in the natural structure of the 
data which belongs to the dependent variable [11,12]. The 
approach is a regression method based on fuzzy set theory 
used in cases where classical logistic regression analysis 
assumptions cannot be fulfilled or the data is fuzzy due 
to its nature [8]. It can also be used in situations where 
observation values or relationships between variables are 
uncertain [7,13-15]. The linear regression is not applicable to 
some situations such as when there is a small data set, 
vagueness in the relationship between the predictors and 
response variables, and inaccuracy or distortion introduced 
by linearization. Therefore, fuzzy regression is generally 
performed to complement those situations and problems [6]. 
Logistic regression modeling is a nonlinear statistical method 
used to model a categorical response variable based on 
some covariates [1]. In fuzzy field, fuzzy logistic regression 
for binary base response is also defined. Studies on this 
topic can be categorized into possibilistic methods and 
distance-based methods. A common viewpoint which is 
applied by Nagar and Srivastava [4] simultaneously, used a 
possibilistic-based approach to investigate a certain fuzzy 
logistic regression model. In fact, they used this approach 
to predict the oral cancer based on some real data sets. 

Since the estimated values of the dependent variable are 
calculated by probability, the equations belonging to the 
fuzzy logistic regression model showing the possibilistic 
value are as follows [4,9,11,13-16];

 (1)   
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W" ! = ln & "#!
[%&"#!]
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,&%
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,&%
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,&%
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 Here; It is a data set which is 	X! = $x!", x!#, . . , x!(%&")( i = 1,… , n 
and it is the observation vector of independent variables 
consisting of precise values such as milk yield, weight, race, age 
in lactation, daily milking number and milking season of ith cow.  
Each independent variable observation is expressed as x ∈ X  
(i: 1,2,3,..,p (p, number of independent variables). µ/!: is the value 
indicating that the ith unit can have the desired property for the 
relevant dependent variable as	µ/ ! = Poss(Y! = 1) 

A8! = $A8(	ve		A8", A8#, …A8!… ,A8%&"( is the coefficient values of 
the independent variables in the function, represented by 
A8! = [a!), a!*] 	a!): is the mode value representing the center of 
the fuzzy coefficients and is in the form of a!) = [a() , a") , . . . , a+) ].  
a!*:  is the value showing the spread of fuzzy coefficients and it 
is in the form of a!* = [a(* , a"* , … , a+* ]. Hence each coefficient is 
defined by A8( = [a() , a(* ], A8" = [a") , a"* ], … , A8, = [a,) , a,* ] 

-.!
["&-.!]

 : 

shows the probability that the ith case will have the property 
considered for each fuzzy case, and is called possibilistik odss 
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Estimation of Fuzzy Coefficients

   

 

   

             

            

            

 

 

These assumptions are as follows:

 

By rearranging (8) Equality, we can create constraints [12] 

for sample data sets as in equation (9)

The first constraint is for calculating the mean and left 
and right spreads of each coefficient, while the second 
constraint is for minimizing the objective function based 
on linear programming (Equation 8) [5,7,26,27].

Goodness of Fit Test Criterion for Fuzzy Regression Models

Fuzzy logistic regression attempts to model and predict 

 Here; It is a data set which is 	X! = $x!", x!#, . . , x!(%&")( i = 1,… , n 
and it is the observation vector of independent variables 
consisting of precise values such as milk yield, weight, race, age 
in lactation, daily milking number and milking season of ith cow.  
Each independent variable observation is expressed as x ∈ X  
(i: 1,2,3,..,p (p, number of independent variables). µ/!: is the value 
indicating that the ith unit can have the desired property for the 
relevant dependent variable as	µ/ ! = Poss(Y! = 1) 
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4: estimated fuzzy output value  
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4: estimated fuzzy output value  

Here, f!"(x):  is the spread of the fuzzy logistic regression approach 
and is as f!"(x) = [a#" + a$"x!$ + a%"x!%+,… ,+a&" x!&]	.	f!'(x) is the mode 
value of the fuzzy logistic regression approach as in equation (3) 

A"! 	= 5a/', s/0, s/17:	s/0 = s/1 = s/		j = 0,1,… , p − 1 the coefficient 
values are assumed as triangular fuzzy numbers because they 
represent measurement errors and general uncertainties. Fuzzy 
output W" /(	j = 1, . . , m) values estimated by equation (1) 
according to fuzzy arithmetic operations are also modeled as in 
equation (2) because they are fuzzy numbers with symmetrical 
triangular properties 

 A"! = $A""	ve		A"#, A"$, …A"!… ,A"%&#* is the coefficient values of 
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A"! = $A""	ve		A"#, A"$, …A"!… ,A"%&#* is the coefficient values of 
the independent variables in the function, represented by 
A"! = [a!', a!(] 	a!': is the mode value representing the center of 
the fuzzy coefficients and is in the form of a!' = [a"' , a#' , . . . , a)' ].  
a!(:  is the value showing the spread of fuzzy coefficients and it 
is in the form of a!( = [a"( , a#( , … , a)( ]. Hence each coefficient is 
defined by A"" = [a"' , a"( ], A"# = [a#' , a#( ], … , A"* = [a*' , a*( ] 

+,!
[#&+,!]

 : 

shows the probability that the ith case will have the property 
considered for each fuzzy case, and is called possibilistik odss 

W" / = ln 3 +,!
[#&+,!]

4: estimated fuzzy output value  

Here, f!"(x):  is the spread of the fuzzy logistic regression approach 
and is as f!"(x) = [a#" + a$"x!$ + a%"x!%+,… ,+a&" x!&]	.	f!'(x) is the mode 
value of the fuzzy logistic regression approach as in equation (3) 

A"! 	= 5a/', s/0, s/17:	s/0 = s/1 = s/		j = 0,1,… , p − 1 the coefficient 
values are assumed as triangular fuzzy numbers because they 
represent measurement errors and general uncertainties. Fuzzy 
output W" /(	j = 1, . . , m) values estimated by equation (1) 
according to fuzzy arithmetic operations are also modeled as in 
equation (2) because they are fuzzy numbers with symmetrical 
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[24].

 The W" ! membership function of the dependent variable, 
estimated by the fuzzy logistic regression analysis method, 
can be shown as in equation (4);  
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 Here, n: is the number of observations regarding the dependent 
variable. j: the number of independent variable. x!": ith 
observation value of the jth independent variable. The number of 
observations n determines the number of constraints because a 
range is estimated for Y#" by approaching from the left and right. 
The constraint number for each estimated W# " value should be 
2xn 

Using Equation (6), the constraint limitation of each situation 
W# "%Y#"& ≥ h, j = 1,2, . . . , n is as in equations (8) and (9) 
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observations n determines the number of constraints because a 
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A"! =	 %A""	ve		A"#, A"$, …A"!… ,A"%&#*  is the coefficient values of 
the independent variables in the function, represented by A"! 	=
[a!', a!(] [2,19,20]. a!': is the mode value representing the center of 
the fuzzy coefficients and is in the form of a!' = [a"' , a#' , . . . , a)' ].  
a!(:  is the value showing the spread of fuzzy coefficients and it is 
in the form of a!( = [a"( , a#( , … , a)( ]. Hence each coefficient is 
defined by A"" = [a"' , a"( ], A"# = [a#' , a#(], … , A"* = [a*' , a*( ] [3,20]. 
+,!

[#&+,!]
 : shows the probability that the ith case will have the 

property considered for each fuzzy case, and is called 
possibilistik odss [9,15]. W" / = ln 3 +,!

[#&+,!]
4: estimated fuzzy output 

value [4,11]. 
 

 Here; It is a data set which is 	X! = $x!", x!#, . . , x!(%&")( i = 1,… , n 
and it is the observation vector of independent variables 
consisting of precise values such as milk yield, weight, race, age 
in lactation, daily milking number and milking season of ith cow.  
Each independent variable observation is expressed as x ∈ X  
(i: 1,2,3,..,p (p, number of independent variables). µ/!: is the value 
indicating that the ith unit can have the desired property for the 
relevant dependent variable as	µ/ ! = Poss(Y! = 1) 

A8! = $A8(	ve		A8", A8#, …A8!… ,A8%&"( is the coefficient values of 
the independent variables in the function, represented by 
A8! = [a!), a!*] 	a!): is the mode value representing the center of 
the fuzzy coefficients and is in the form of a!) = [a() , a") , . . . , a+) ].  
a!*:  is the value showing the spread of fuzzy coefficients and it 
is in the form of a!* = [a(* , a"* , … , a+* ]. Hence each coefficient is 
defined by A8( = [a() , a(* ], A8" = [a") , a"* ], … , A8, = [a,) , a,* ] 

-.!
["&-.!]

 : 
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The approach suggested by Pourahmad et al.[14] based on 
Diamond's likelihood (possibilistic) approach was used [3,21-23]. 
The main purpose is to minimize the total uncertainty of the 
model by minimizing the total spread of fuzzy coefficients. A"! =
$a"#, s"$, s"%(:			s"$ = s"% = s"		j = 0,1,… , p − 1 the coefficient 
values are assumed as triangular fuzzy numbers because they 
represent measurement errors and general uncertainties. Fuzzy 
output W" "(	j = 1, . . , m) values estimated by equation (1) 
according to fuzzy arithmetic operations are also modeled as in 
equation (2) because they are fuzzy numbers with symmetrical 
triangular properties [19], 
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1-The real lactation milk yield value (Y#!) of each cow should be 
estimated from the (W# ") value estimated with the fuzzy approach, 
with a membership degree of the least turbidity tolerance 
coefficient (h) value%W# !%Y#!& ≥ h& [13]. Here Y#!: is the observed value 
of the dependent (response) variable, which is a definite number, 
and is as 
 Y#! = ln , #$!

[&'#$!]
- , h ∈ (0.1) [11,25].   

2- The objective function minimizing the (W# ")  spread of the fuzzy 
output values to be estimated is as in equation (7) [14,15,24]; 
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the possibility of success based on fuzzy covariates. To 
appraise the goodness of fit of the fuzzy logistic regression, 
we introduce some criteria. These are “Mean degree of 
membership (possibilistic odds) (MDM), “Mean of Squares 
Errors (MSE) [16].

Mean Degree of Memberships (MDM)

The average degree of membership is a criterion similar 
to the coefficient of expression (R2), which indicates how 
much of the observed change in the dependent variable 
is explained by the observed change in the independent 
variables [22]. With the help of an average membership level 
of 10;

    
    (10)

(11)

can be calculated.  It is desirable that the average of the 
calculated membership degrees is close to 1. Average 
membership degree takes values between 0 and 1 [16,26,27]. 

Mean Square Error Test Criteria (MSE)

It is an index used to evaluate the goodness of fit. The 
closer the predicted value is to the observed value, the 
stronger the model’s power to predict real situations [17]. 
The calculation formula is as Equation (12)  [9,28];

                  (12)

can be calculated [15,28].    

Statistical Analysis

The statistical analyses were performed by Microsoft 
Office EXCEL 2016 (R) and LINGO 16.0 softwares. The MDM 
and MSE values were calculated to decide the adequecy of 
the model.
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 Step 1. Experts and producers may be suspicious of the 
measurements made because sensitive devices required for the 
measurement of average milk yield values in a lactation period 
cannot be provided or due to measurement errors. In such cases, 
they cannot represent the average milk yield value of each animal 
by one of the two dependent response categories. In other 
words, since the observed values of the dependent variable do 
not represent a certain situation, it cannot be stated that they 
belong to any category as 0 or 1. Therefore, due to the 
uncertainty in the dependent variable, the probability that the ith 
animal belongs to the category 1 (E(Y) = P(Y = 1) = p) and its 
odds ratio ) !!

[#$!!]
*   cannot be calculated 
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For this purpose, independent variables were determined as milk 
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dependent variable is whether the average milk yield (Yi) (kg) 
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 value indicating the ratio of the probability of having a 

certain property of the related fuzzy observation and not being 
possible is called “possibilistic odds” [4,23]. 

  In order to apply the fuzzy logistic regression analysis method, 
the possibility of the ith case to have this related property due to 
the uncertainty in the dependent variable is expressed as µ" ! =
Poss(Y! = 1)[4,10,12]. We calculated the probability ratios by 
applying logarithmic transformations for the values of the binary 
dependent variables according to different significance levels. 
Within the same logic, we calculated the measurement value 
corresponding to µ"! and the probability values of 90 cows as a 
triangular fuzzy number (Y+") with the symmetric triangular 
membership function, as in 

 In order to apply the fuzzy logistic regression analysis method, 
the possibility of the ith case to have this related property due to 
the uncertainty in the dependent variable is expressed as µ" ! =
Poss(Y! = 1)[4,10,12]. We calculated the probability ratios by 
applying logarithmic transformations for the values of the binary 
dependent variables according to different significance levels. 
Within the same logic, we calculated the measurement value 
corresponding to µ"! and the probability values of 90 cows as a 
triangular fuzzy number (Y+") with the symmetric triangular 
membership function, as in 
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We used these calculated fuzzy values as output observation values.

  

Step 3. The possibilistic model to be created at the h = 0.5 level is

 

corresponding to µ" ! and the probability values of 90 cows as a triangular fuzzy number (Y$") with the symmetric triangular 
membership function, as in Table 1. 

 Step 2. In order to minimize the uncertainties of independent variables affecting the average milk yield in a lactation period at 
the level of h=0.5, constraint values from Y"! = log" '

#.%&''
[!)#.%&'']( = −0.9281 to Y"+# = log" '

#.#%+#
[!)#.#%+#]( = −3.5110  were calculated 

and 180 (90*2) constraint matrices were created as in equation (14): 
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 The first six elements in each row of the constraint matrices show the center (a!") values, and the last six elements show the spread 
(a!#)  values. 

 

W" ! = A"" + A"# ∗ LSV + A"$ ∗ HA + A"% ∗ HI + A"& ∗ HLY + A"' ∗ GSS + A"( ∗ SM,  j = 1,2,…,90 
To estimate the A"), i = 0,1,...,6, coefficients which belong to the model, Diamond's possibilistic method, which is based on the linear 
programming method, was used [23]. The values in Table 2 are calculated by using the constraint matrices in the equation (14) created 
with this logic approach in "Lingo 16.0" software [16,21]. 
 

 Studies have determined that changing the value of h does not affect the center of the coefficients (a!") but affects the spread (a!#) 
and the value of the objective function (Z) 
Step 4. The fuzziness of the model to be created at the level of h = 0.5, considering the total values of the variables and the 
dispersion values, was calculated as in the Equation (15)  

Step 4. The fuzziness of the model to be created at the level of h = 0.5, considering the total values of the variables 
and the dispersion values, was calculated as in the Equation (15) 
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and the value of the objective function (Z) 
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dispersion values, was calculated as in the Equation (15)  
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and the dispersion values, was calculated as in the Equation (15) 

 Studies have determined that changing the value of h does not affect the center of the coefficients (a!") but affects the spread (a!#) 
and the value of the objective function (Z) 
Step 4. The fuzziness of the model to be created at the level of h = 0.5, considering the total values of the variables and the 
dispersion values, was calculated as in the Equation (15)  

Step 4. The fuzziness of the model to be created at the level of h = 0.5, considering the total values of the variables 
and the dispersion values, was calculated as in the Equation (15) [21,28].
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Z1X12 = 96.293. This objective function, calculated in 90x14 dimensions, is minimized by limiting it to 180 (90 observations 
× 2) matrix of coefficients.

Step 5. The best fuzzy logistic regression analysis equation created at Z = 96.293 fuzziness value is calculated as in the 
Equation (16). 

With Equation (16), it is tried to determine whether each cow is a high milk producing or low milk producing cow with 
the constraint lines of the independent variable values used. The possibilistic probability values of the lactation milk yield 
values to be estimated in these unclear situations are a fuzzy number with a symmetrical triangular feature. When we 
want to calculate the posibilistic odds of ratio of the average milk yield value of the number one cow in a lactation period, 
the relevant data are applied and calculated in equation (17);

 

Step 6. For each cow, calculations were made as in equation (17) and the values in Table 3 were obtained. 
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Here,  W"! ≅	(−1.98; 	5.38)"  is the natural logarithm of the possibilistic odds of ratio of the average milk yield value of the number one 
cow in a lactation period and is -1.98. 

  

Step 7. In order to calculate the predicted value of the possibilistic odds of ratio calculated for each cow in the sixth step, the 
extension principle in equation (6) is used. For example, the posibilistic odds of ratio of the average amount of milk in a 
lactation period belonging to number one cow (exp$W&!' =

"#!
[!%"#!]

) = W&! )ln
'
!%'
,  is calculated as in equation (18) [20].  
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Possibilistik odds of having a high milk yield cow according to the fuzzy observation values of cow number one was 
calculated as 0.138. 
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Step 8. Since the calculated !"!
[$%!"!]

 rate values can take values between 0 and +∞, logit transformation is made by taking the natural 

logarithms of the odds values (logit is made by taking the natural logarithm of the odds value of an event). As a result of the 
transformation, the nonlinear logistic regression function is transformed into a linear symmetric function by ensuring that the limits of  
Y$' = ln ( !"!

[$%!"!]
) values are taken from the range (0,+∞)   to the limit (−∞,+∞) [28]. The estimated fuzzy likelihood (P0() values are 

calculated by applying transformation to the estimated posibilistic odds ratio values. Because 0.138 = !)"
[$%!)"]

 for number one cow, It has 

been calculated as  µ6$ = 0.138 − 0.138 ∗ µ6$ → µ6$ + 0.138 ∗ µ6$ = 0.138 → 0.138 ∗ µ6$ = 0.138 → µ6$ = *.$,-
$.$,-

= 0,121.    
 

This calculated value is the high milk yield likelihood value of number one cow and it was calculated as exp=W$$? = W$$ @ln
.
$%.A =

W$$(−1.98) = exp	(W$$(0.395). This calculated value is explained with the exp	(W$$(0.395) =0.121 possibilistic that the number one cow 
is the normal milk producing cow. And for the cow no 90, it is calculated as exp=W$/*?;  
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exp$W&!"' = (−3.51) = exp	(W&!"(0.03). exp[0.395] ≥ h = 0.5  is indicated by the value of tolerance coefficient (h). This calculated 
value is the predicted value of the possibilistic odds of the cow numbered ninety to be a high milk producing cow. Another important 
feature of the fuzzy logistic regression analysis approach is that the probability of probability (posibilistic odds) value can be predicted 
when a new cow other than the cows used is added to the study or business. For example, suppose that the 91th low milk yield cow with 
an average lactation milk yield of 2850 kg and x# = 630, x$ = 0, x% = 41, 	x& = 2, 	x' = 0 will be included in the enterprise. By applying 
these values at equation (16), possibilistic odds ratio of average milk yield in a lactation period (Possibilistic odds) is calculated as: 
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According to the fuzzy observation values of the newly added cow, the value showing the possibilistic odds of a low milk yield cow 
can be calculated as follows: exp$W&!"'; 
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Step 9. In order to calculate the “Average Degree of Membership (MDM)” value of the fuzzy logistic regression analysis 
model in Equation (16), the average milk yield value for each cow in a lactation period and the estimated turbid output 
(mean milk yield) value are used in equations (11) and (12). Membership degrees of the predicted possibilistic odds of 
average milk yield values in a lactation period for each cow are calculated as: 

And the values in Table 5 are obtained. 
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It is seen that the posibilistic odds value of this newly added cow is calculated as 8.49. This value is the value that indicates the ratio 
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each other cow were made in this way and the values in Table 4 were obtained. 
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dIscussIon

Classical logistic regression analysis method is used to model situations where the values of the dependent variable are 
categorical. The method can generally be used in educational sciences, social studies, and research related to the diagnosis 
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The values calculated as this are substituted in equation (13), it is calculated as: defCoG'exp*W, !-. =
".""$%&'(.))*'
+".(((,&,).-%%.

= 1.533. The 

defCoG'exp*W, /-.  values in Table 6 were obtained by calculating the clarified (certain) values of the output values for each other cow 
in this way. 
 

 

From each defCoG value calculated in Table 6, the observed likelihood (Possibilistic odds) value was subtracted and squared 
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The MSE value calculated by Equation (25) was obtained as 4.871 and √MSE = 2.207. This calculated value is the test criterion value 
that shows the average distance of the fuzzy values estimated with the fuzzy logistic regression analysis model in Equation (16) from 
the real observation values.  
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and treatment of diseases [8,28,29]. However, the use of the 
method depends on some assumptions. In these studies, 
reasons such as the expressions of human thoughts and the 
data sets obtained related to the diagnosis of yield values 
and animal diseases in livestock, the history of the disease, 
the unknown environmental factors in the formation of 
the diseases, and the uncertainty in the symptoms of 
the disease may cause uncertainties in the diagnostic 
processes. These assumptions cannot be fulfilled due to the 
uncertainties arising due to the aforementioned reasons. In 
these cases, the application of classical statistical methods 
is not correct [15]. It is a more valid and reliable choice for 
researchers to use the fuzzy logistic regression analysis 
method, which is a combination of fuzzy sets and classical 
statistical theories. It is also a method used in modeling 
the natural uncertainties in the observation values of the 
dependent variable or in the relationships. Possibilistic 
logistic regression analysis method, which is created with the 
fuzzy logic approach used in different scientific fields, has 
almost no applications in animal breding in the literature. 
The application for the estimation of milk yield values 
of animals belonging to different breeds was discussed 
for the first time in this study. For fuzzy situations, in the 
parameter estimations of the fuzzy logistics model, it is 
thought that the Diamond’s Possibilistic method may be a 
more correct choice to apply to the data obtained for the 
estimation of yield values in livestock. Doing these and 
similar studies will gain importance in the solution of all 
kinds of uncertainties regarding animal husbandry. In the 
field of veterinary medicine; fuzzy methods were used in 
various subjects such as estrus detection [30], evaluation of 
raw milk quality [31], disease diagnosis and determination 
of risk factors [32]. In their method, fuzzy relation between 
crisp inputs-crisp output observations is modeled by the 
proposed model and then compared to the results with 
a fuzzy neural network method. For some possibilistic 
methods, one can see the studies done by Taheri and 
Mirzaei Yeganeh [10], Pourahmad et al.[15], and Atalik and 
Senturk [8]. Besides, some recent works on distance-
based fuzzy logistic regression models are presented by 
Pourahmad et al.[23], Namdari et al.[28], Salmani et al.[16], and 
Gao and Lu [17]. Mustafa et al.[9] proposed the fuzzy least 
square method (FLSM) to determine fuzzy parameters, in 
that analogue of the conventional normal equations are 
derived with a suitable metric. Fuzzy logistic regression 
analysis approach that are presented in these studies 
are different from other works in the assumptions and 
optimization method. Pourahmad et al.[15] and Gao and 
Lu [17] introduced certain least squared fuzzy logistic 
regression model and evaluated their proposed models by 
using a capability index for goodness of fit of the model. 
Namdari et al.[28] used least absolute deviation method 
to estimate coefficients of a fuzzy logistic regression 
model and applied measure of performance based on 
fuzzy distance and a sensitivity index to evaluate the 
proposed model. Some discussions have been presented 
offering some modifications on the solution of the above- 

mentioned exponential possibility regression problems, 
especially on determining the center of the possibility 
distribution [3].

To our knowledge, this is the first study of subject “animal 
husbandry”, therefore it can not be compared or discussed 
with other studies on possibilistic logistic regression in the 
literature.

In conclusion, it is thought that the approach can be used 
widely in a short time in studies on animal husbandry and 
this study can be the basis for similar studies in the future. 
It can be suggested that researchers who work on this 
field should consider the possibilistic logistic regression 
where there is an uncertainity in the dependent variable 
or in the relationships. It can be concluded that the model 
can provide the businesses on milk production an efficient 
and accurate prediction results with minimum deviation 
by MDM and MSE indices.
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