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Summary

The aim of this study was to investigate usefulness of Kalman Filter (KF) Random Walk methodology (KF-RW) for prediction of
breeding values in animals. We used body condition score (BCS) from dairy cattle for illustrating use of KF-RW. BCS was measured by
Swiss Holstein Breeding Association during May 2004-March 2005 for 7 times approximately at monthly intervals from dairy cows
(n=80) stationed at the Chamau research farm of Eidgendossische Technische Hochschule (ETH), Switzerland. Benefits of KF were
demonstrated using random walk models via simulations. Breeding values were predicted over days in milk for BCS by KF-RW. Variance
components were predicted by Gibbs sampling. Locally weighted scatter plot smoothing (LOWESS) and KF-RW were compared under
different longitudinal experimental designs, and results showed that KF-RW gave more reasonable estimates especially for lower
smoother span of LOWESS. Estimates of variance components were found more accurate when the number of observations and
number of subjects increased and increasing these quantities decreased standard errors. Fifty subjects with 10 observations each,
started to give reasonable estimates. Posterior means for variance components were found (with standard errors) 0.03 (0.006) for
animal genetic variance 0.04 (0.007) for permanent environmental variance and 0.21 (0.02) for error variance. Since KF gives online
estimation of breeding values and does not need to store or invert matrices, this methodology could be useful in animal breeding
industry for obtaining online estimation of breeding values over days in milk.
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Damizlik Degerlerinin Kalman Siizgeci ile Tahmini:
Siit Sigirlarindan Toplanan Viicut Kondiisyon Puanlar icin
Bir Uygulama

Ozet

Bu calismanin ana amaci; rassal ylrlyus taslamini kalman stzgeci (RY-KS) ile kullanarak ciftlik hayvanlarinda zamana dayal
damizlik degerlerinin tahmin edilebilmesinin uygunlugunun arastiriimasidir. Veri seti Chamau enstitiisiindeki stit ineklerinden, isvicre
Holstayn birligi tarafindan elde edilmistir (n=80). Yerel agirlikli uzanim tahmincisi (LOWESS) yontemi ve RY-KS benzesim yolu ile farkl
deneme desenleri icin karsilastirnldi, sonuglar benzer bulunsa da, bazi sartlar altinda RY-KS daha uygun sonuglar verdi. Birey ve gézlem
sayllarinin varyans unsurlari ve Ureteg tahminine olan etkileri incelendi ve her ikisinin arttirilmasinin daha dogru tahminleri daha kiigiik
standart hatalarla verdigi saptandi. Varyans unsurlari gibbs érneklemesi ile tahmin edildi. Soncul ortalamalar genetik varyans icin 0.03
(0.006), kalici cevre icin 0.21 (0.02) ve hata varyansi i¢in 0.21 (0.02) olarak hesaplandi. Kalman Stizgeci damizlik degerlerinin giincel
tahminlerini vermesi ve matrislerin devrilmesine ihtiya¢ gostermemesi nedeni ile blylk veri setlerinden zamana dayali damizlik
degerlerinin tahmin edilmesinde faydali olabilir.

Anahtar sozciikler: Kalman slizgeci, Viicut kondlisyon puanlari, Bayesci yéntemler
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INTRODUCTION

A filter is a device that is used for example to separate
water from particles. By analogy this idea was extended to
separation of signals from noise ' in engineering context.
Kalman Filter (KF) was defined with Bayesian features
by Harrison and Stevens? as Bayesian Dynamic Linear
Model?® although West and Harrison * quoted as “Bayesian
forecasting is Kalman Filtering” is akin to saying that
statistical inference is least squares”. Migon et al.> described
some special characteristics of KF as following; i) all
relevant information’s are used, including history, factual
or subjective experiences, and knowledge of forthcoming
events ii) routine forecasting is produced by a statistical
model and exceptions can be considered as an anticipation
or in a retrospective base iii) prospective (what happened)
and retrospective (what if) analysis are easily accommodated
iv) model decomposition, a full Bayesian forecasting model
may be decomposed into independent dynamic linear
models, each one describing particular features of the process
under analyses. More details about some of literatures about
Kalman Filter could be found in ©.

KF methodology could be useful in animal breeding
industry when analyzing very big time series data sets since
it does not need store or invert matrices. In addition online
estimation of breeding values could be useful for selection
schemes over time. As was shown by Van Bebber et al.” KF
could also be used for detecting false measurements in
experimental farms.

We investigated the possible application of KF-RW in
field conditions. In this context, we chose body condition
score (BCS) in dairy cows #°. Body weight, feed (dry matter)
intake and milk production level together form an important
cluster of functional traits that determines the amount of
fat reserves stored in the body; this is now recorded in many
countries as ‘body condition score’ or BCS 8%, A common
body condition scoring system has been developed to
estimate the BCS of cows in a herd. This system provides
producers a relative score based on an evaluation of fat
deposits in relation to skeletal features. The scoring method
involves a manual assessment of the thickness of fat cover
and prominence of bone at the tail head and loin area.
The most widely used body condition scoring system for
dairy cattle assigns scores from 1 to 9 in North America and
from 1 to 5 in most European countries, with the lowest
score meaning emaciated and carrying virtually no fat
and the highest score meaning excessively fat. Veerkamp
and Brotherstone ' estimated variance components for
BCS at calving and for average BCS over the first 26 wk
of lactation; they reported heritability estimates for BCS
ranging between 0.24 and 0.43. Jones et al."" reported for
Holstein Friesian heifers moderate heritability estimates of
BCS, varying with stage of lactation from 0.23 to 0.28.

Sallas and Harville '? suggested to use KF for prediction

of breeding values for consecutive lactations. Forni et al.’
used dynamic linear model via KF to modeling of cattle
growth data. The main aim of this study was to provide
theoretical developments of KF-RW in the context of adapting
it to analysis of animal breeding data with an emphasis
on application of KF-RW in predicting breeding values over
DIM for BCS. This would be the first use of KF-RW for predicting
breeding values over DIM. Simulations are performed
to check the validity of methods and comparison of different
sub-models.

MATERIAL and METHODS

Statistical Models and Analyses

Random Walk Model: For demonstration purposes we
used random walk model and it is given below.

V=0, t&, & OCN(O’Gez)

., =a,+n,, 0, «N0.c2) W

In (1) the first equation is called the observation equation
and the second equation is called the state equation. We
assumed that observations y, depends on unobservable
quantity a,, and our aim was to do statistical inference on
a, (states). We assumed constant variances for g, and n, as

o’ and &2 respectively with independent, identically and
normally distributed random variables with zero means.

LOWESS ™ smoother was used to make comparisons with
random walk model (1) in recursive form (KF-RW).

Parameter values assumed were o =100 and o> =25
for simulating observations, y, from random walk model. A
total of 1000 Gibbs cycles with first 50 cycles used as burn
in period used to obtaining estimates of states, &, and
variance components o, , o. . For genetic analyses of

traits following mixed model is normally used in animal
breeding;

y=Xa+Za+Zp+e ()

where y is the vector of observations, a is the vector of
fixed effects, a is the vector of breeding values, p is the
vector of random permanent environmental effects, X,
Z,, Z, are design matrices and e is the vector of random
residual effects.

For the random effects it was assumed that

a, Asl 0 0
Var|p, |~N|0;| 0 To, 0
e, 0 0 Io’
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a, a_ \(Ac! 0 0
Var|p, |~N||p ;] 0 Tlo. 0
e, e, 0 0 Io’

wheres?: 52,and o ;are genetic, permanent environ-

ment and error variances. A is the additive genetic
relationship matrix for the animals; I is an identity matrix.

In the following, we show general assumptions used in
KF-RW method, based on Bayesian principles. Proportional
joint posterior distribution without constant terms given
in (3) using (2) based on following recursive relationship (4);

LOWESS: The LOWESS model '? was used to capture the
local variability by weighted least square regression using
different smoother spans.

Implementation

All computations were made in R %, using the package
called MASS ™ implemented in R, for sampling from
multivariate Normal distributions. We compared KF-RW
and LOWESS approach. We investigated effect of different
number of subjects and different number of observations
per subject on estimation of both states and variance
components. Finally we applied the theory to animal
breeding data to predict breeding values over DIM.

p(et ‘0(4)9 Yn )OC p(et |0t—1 ’ Yz—l )p(0t+1 |0t ’ Yz—l )p(Yt |Ot ’ Yt—l)

f(y

X(O'j )_%Na exp(— %a;Alal /o‘j ){ﬁ (Jj )’%Na exp(
b0 U 0. ) |
)_[%HJ exp{—

1 "o
_E(at _at—l) A l(at —atl)/ofﬂ

ba,p.o’,02,02 ) (02)2" exp(—%(y ~Xb-Z,a-Z,p)y —Xb—Zaa—pr)/afj

vP SP
20'12,

Last line of (3) are product of density of scaled inverted chi-square distributions assumed prior for variance parameters.
After algebraic manipulations conditional distributions could be written as following,
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where in the last lines Q stands for quadratic form of the
respective error terms and DF degrees of freedoms.

Application of KF-RW Method to BCS Data

BCS was measured by the Swiss Holstein Breeding
Association as described by Trimberger '® using 1 to 5 scale,
during May 2004-March 2005 for 7 times approximately
at monthly intervals from multiparous dairy cows (n=80)
stationed at the Chamau research farm of the Swiss Federal
Institute of Technology, Switzerland. The experimental
procedures of the farm followed the Swiss Law on Animal
Protection and were approved by the Committee for the
Permission of Animal Experiments of the Canton of Zug,
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Zug, Switzerland. Results of 7 BCS sessions split into 4
periods over DIM to reduce number of missing values.
Missing values filled in with subject specific averages. A
summary of the dataset used for BCS analysis is given in
Table 1. The pedigree file included 637 animals.

For genetic analyses of BCS following mixed model was
used;

y=Xp+Z,a+Z,p+e 4

where y is the vector of observations included 320
(80 animals, with 4 repeated measurements each)
observations, f is the vector of fixed effects including
breed (n=80; b,=Holstein-Friesian, n,=42, b,= Brown Swiss,
n,=38) age at calving, and year-season interaction, a is
the vector of breeding values, p is the vector of random
permanent environmental effects, X, Z,, Z, are design
matrices and e is the vector of random residual effects.

RESULTS

Random Walk Model for Simulated Data Sets

We compared predictions of simulated observations
from random walk model with different smoother spans for
LOWESS and KF-RW (Table 2). Predictions were found to be
both reasonable by KF-RW models and LOWESS approach.

We also investigated effect of different sampling sizes

to state and variance components estimates (Table 3) from
KF-RW. Lowest number of observations (n=5) with lowest
number of subjects (n=50) gives reasonable predictions of
the states but incearesing both sampling sizes also decrease
the standard errors of the estimates of the states. However
prediction of variance components was found far from
their parameters values with the lowest number of
observations (n=5) and this effect gradually decreased by
increasing the number of subject holding the number of
observations as fixed. Standard errors of predicted variance
components were found decreased by increasing the both
number of observations and number of subjects.

Prediction of Breeding Values for Body Condition
Scores by Kalman Filter

We analyzed BCS data for permanent environmental
variance without genetic effects in order to decide number
of Gibbs cycle and burn in period. Repeated runs of the
same analyses for the same priors showed that monte carlo
errors were small. Two thousand Gibbs cycles with 200
burn-in period were found reasonable. However, probably,
since each cow consisted of small number of repeated
measurements (n=4) different prior values gave different
estimates, especially for smaller values of scaling factors,
s, (Table 4).

Increasing the scaling factor, s, gave more stable
estimates, hence v=5 with s=0.5 chosen for parameters of
scaled inverted chi-square prior distribution for genetic
analyses of the BCS dataset. Scatter plots of gibbs samples

Table 1. Number of records, means, and standard errors for body condition scores for some selected days of first lactation

Tablo 1. Viicut puanlari icin bazi glinlere ait g6zlem sayilar, ortalamalar ve bunlara ait standart hatalar

Body Condition Score
DIM
n X SE
1 80 3.24 0.006
75 80 3.16 0.005
150 80 3.22 0.005
305 80 3.21 0.006

Table 2. Mean:s of predictions of observations simulated from random walk model by different smoother spans for LOWESS and Kalman Filter random walk

methodologies

Tablo 2. Kalman Stizgeci rassal yirtiyts taslami ve LOWESS (farkli tiretegler icin) yontemlerinin rassal yiiriiytis benzesimini tahmin ortalamalari

Smoother Span Observations LOWESS Kalman Filter
f=0.1 201.19 (0.12) 202.96 (0.02) 202.78 (0.08)
f=0.5 199.40 (0.11) 201.32 (0.06) 199.71 (0.07)
f=0.7 261.40 (0.25) 264.42 (0.21) 263.57 (0.23)
f=0.9 157.08 (0.17) 162.35(0.12) 159.15 (0.15)
f=0.01 203.62 (0.13) 202.93 (0.06) 204.71 (0.09)
f=0.05 160.75 (0.15) 161.41 (0.11) 161.51 (0.13)
f=0.07 184.61 (0.16) 182.30 (0.13) 185.08 (0.14)
f=0.09 116.91 (0.18) 119.25 (0.15) 117.42(0.17)
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were visually investigated (figures are not shown), since no
patterns were observed for all variance components; it was
decided that sample size was reasonable. Posterior means
for variance components found 0.21 (0.02) for error variance,
0.03 (0.006) for animal genetic variance and 0.04 (0.007) for
permanent environmental variance. In this data set variation
was found quite small within and between animal.

DISCUSSION

In the simulation study predictions of observations were
found to be both reasonable by KF-RW models and LOWESS
approach. However mostly KF-RW estimates were found
better than those of LOWESS estimates (Table 2). It is difficult
to compare two methodologies directly, since each of them
has their own specifications, but KF-RW model does not
need any tuning parameters. However predicting variance
components needs additional computing power in KF-RW.

We also investigated effect of different sampling sizes to
state and variance components estimates (Table 3) from KF-
RW. Estimates of states were getting closer to observations
as number of observations and number of subjects
increased. Also it was observed that increasing both
quantities decreased associated standard errors. Variance
components estimates were found to be more accurate

when number of observations and number of subjects
increased. Again increasing these quantities decreased
standard errors. Fifty subjects with 10 observations each,
started to gave reasonable estimates.

In real biological dataset, different from simulated
dataset, number of observations per animals was low (n=4)
and this was in effect for predicting variance components
(Table 4). Different prior values gave very different variance
component predictions especially for smaller values of
scaling factors, however it was stabilized by increasement of
both degree of belief and scaling factors. Based on various
runs we decided to use v=5, s=0.5 for genetic analyses of the
BCS dataset.

We used 2000 Gibbs cycles with 200 burn in period,
based on results of different runs (results not shown). Since
dataset were obtained under homogenized, controlled
experimental farm; small amount of variances predicted
for both within and between animals. Visual inspection
showed that predictions of observations were agreed
with actual observations.

We provided a general theoretical framework for use
of KF-RW in the analyses of animal breeding data, with an
emphasis on application of KF-RW in predicting breeding
values for BCS measured as a longitudinal trait. Simulations

Table 3a. Means of estimates of states @ , observations Y . Standard errors given in bracets

Tablo 3a. Durumlarin @ ve gézlemlerin Y tahminlerinin ortalamalari. Standart hatalar parantez icinde verilmistir

Number of Observations
';'::;:cet’:f 5 10 20 50
6 y 0 y 0 y 6 y
50 198.80 (0.04) 198.85 (0.05) 201.08 (0.02) 201.02 (0.02) 200.67 (0.02) 200.67 (0.01) | 196.57 (0.009) | 196.52 (0.001)
100 200.77 (0.02) 200.87 (0.03) 200.19 (0.01) 200.24 (0.01) | 200.02 (0.008) | 199.92 (0.009) | 197.75 (0.005) | 197.55 (0.005)
200 199.58 (0.01) 200.38 (0.02) | 199.33(0.006) | 199.58 (0.07) | 200.00 (0.004) | 200.04 (0.004) | 200.72 (0.002) | 200.68 (0.002)
500 199.46 (0.004) | 199.54 (0.005) | 199.66 (0.003) | 199.63 (0.002) | 199.42 (0.001) | 199.35 (0.002) | 200.89 (0.0009) | 200.98 (0.001)
1.000 199.63 (0.002) | 199.86 (0.002) | 199.95 (0.001) | 200.08 (0.001) | 199.48 (0.0009) | 199.53 (0.0007) | 200.05 (0.0005) | 200.04 (0.0005)

Table 3b. Means of predictions of variance components ( G EZ o} f ). Standard errors given in bracets

Tablo 3b. Varyans unsurlarinin tahminlerinin ortalamalari &: 6'3 . Standart hatalar parantez icinde verilmistir

Number of Observations
Number of 10 20 50
Subjects
o o o o o o o 6!
50 71.00 (0.13) 40.52 (0.12) 26.01 (0.03) 102.58 (0.07) 29.43 (0.02) 99.97 (0.01) 26.07 (0.004) 103.99 (0.01)
100 95.58 (0.10) 35.71(0.11) 25.42 (0.01) 101.56 (0.04) 31.34(0.01) 93.88 (0.02) 26.39 (0.003) 92.62 (0.007)
200 97.38 (0.05) 33.92(0.05) 27.91 (0.01) 94.67 (0.02) 23.44 (0.003) 98.43 (0.009) 26.92 (0.001) | 102.15 (0.003)
500 100.31 (0.02) 36.02 (0.02) 25.47 (0.003) 99.64 (0.009) 23.18 (0.001) | 102.09 (0.001) | 25.10(0.0005) | 99.32(0.001)
1.000 97.75 (0.007) 20.94 (0.01) 23.16 (0.001) | 101.98 (0.004) | 23.71 (0.0007) | 100.93 (0.002) | 24.47 (0.0003) | 100.59 (0.0008)

A2 . . ~2 q .
O, : Estimates of error variance &, : Estimates of states variance
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scaling factors)

Table 4. Estimates of state (G, ) and error variances (6 ) for different parameter values of scaled inverted chi-square prior distributions (v degree of belief, s

Tablo 4. Durumlarin (5 ) ve hata varyanslarinin (2 ) 6lceklenmis tersinir kikare énciil dagilisi ile tahmini (v inang derecesi, s 6lcekleme faktorii)

v=0.01 v=1 v=2 v=3 v=4 v=5
S
~2 A2 ~2 A2 ~2 ~2 ~2 A2 ~2 A2 ~2 ~2
O-n o, O-n o-e O-n O-e O-n O-e O-n O-e O-n O-e
s=1 0.0005 0.18 0.02 0.18 0.04 0.19 0.04 0.20 0.05 0.21 0.06 0.21
5s=0.1 0.00009 0.18 0.04 0.18 0.009 0.17 0.01 0.17 0.02 0.17 0.02 0.18
5=0.5 0.0003 0.18 0.01 0.18 0.03 0.19 0.03 0.19 0.04 0.19 0.04 0.19

Standard errors varied between 0.000001-0.14

were also performed to check the validity of methods
and comparison of different sub-models. Although we
used random walk model; model choice depends on the
variability and prior information about dataset, different
models could be more realistic in different applications.
Since random walk model is not stationary it may not be
suitable for animal breeding data under certain conditions.
We assumed constant variances for state and error
components over DIM, however this assumptions could
be extended for time dependent variance components
models, and it could be claimed that it would give more
realistic results. Since KF gives online estimation of breeding
values and does not need to store or invert matrices, this
methodology could be useful in animal breeding industry for
obtaining online estimation of breeding values over DIM.
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