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Summary
Some symmetric and heavy-tailed distributions, such as Student’s-t and Slash, have been suggested for robust inference in linear 

mixed models. These robust models are characterized by the degrees of freedom of these distributions, and include the normal 
distribution when the degrees of freedom approach infinity. This simulation study investigated joint estimation of degrees of freedom 
for the residual and all other genetic and non-genetic parameters in the Slash distributed residual datasets. Bivariate data with heavy-
tailed distributed residuals were generated using Slash distributions with 4 or 12 degrees of freedom. Models with bivariate Student’s-t, 
Slash and normal residuals were fitted to each dataset using a hierarchical Bayesian approach. Predictive log-likelihood values strongly 
favoured the bivariate Student’s-t and Slash models over the normal models for simulated heavy-tailed datasets. Posterior mean 
estimates of degrees of freedom parameters seemed to be accurate and unbiased. Estimates of sire and herd variances were similar, 
if not identical, across fitted models. Posterior mean and 95% posterior probability interval estimates of error variances in simulated 
datasets were found to be similar. Reliable estimates of degrees of freedom were obtained in all simulated datasets. The predictive log-
likelihood was able to distinguish the correct model among the models fitted to heavy-tailed datasets.
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Hata Terimleri Slash Dağılımı Gösteren Bivaryet Veri Setlerinin 
Dirençli Doğrusal Karışık Modellerle Değerlendirilmesi

Özet
Student’s-t ve Slash gibi bazı simetrik ve kalın kuyruklu dağılımlar, doğrusal karışık modellerde dirençli tahminler için önerilmektedir. 

Bu dirençli modeller bu dağılımların serbestlik dereceleri ile tanımlanmakta ve serbestlik derecesi sonsuza gittiğinde oluşan normal 
dağılımı da içermektedir. Bu simülasyon çalışmasında; Slash dağılımı gösteren hata terimli veri setlerinde, hata terimlerine ait serbestlik 
derecesi ile genetik ve genetik olmayan parametrelerin birlikte tahmini amaçlanmıştır. Kalın kuyruklu hata terimlerine sahip bivaryet 
veri setleri 4 veya 12 serbetlik dereceli Slash dağılımı kullanılarak türetilmiştir. Hata terimleri bivaryet Student’s-t, Slash ve normal olan 
modeller hiyerarşik Bayesian yaklaşımı kullanılarak her bir veri setine uygulanmıştır. Tahmini log likelihood değerleri, kalın kuyruklu 
dağılım gösteren veri setleri için Student’s-t ve Slash dağılımlı modellerin normal modele göre çok daha uygun olduğunu belirtmiştir. 
Serbestlik derecesinin ortalamasının yansız ve isabetli tahmin edildiği gözükmektedir. Baba ve sürü varyansları uygulanan modellerce 
aynı olmasada benzer olarak tahmin edilmiştir. Türetine veri setlerinde tahmin edilen hata varyanslarının ortalama ve %95 olasılık 
aralıkları da benzer bulundu. Serbestlik derecesinin güvenilir tahmini bütün veri setleri için elde edildi. Tahmini log-likelihood değeri 
de kalın kuyruklu dağılım gösteren veri setlerine uygulanan modeller arasında doğru modeli doğru şekilde belirledi. 
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Bayesian and likelihood-based methods for prediction 
and estimation of variance components require definition 

of the distributional assumptions relating to the data. The 
usual definitions involve normality of random factors and 
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residual effects. In practice, field data often exhibit more 
outliers than would be expected if the true distributions 
of effects were normal. Such heavy-tailed distributions can 
result from unknown fixed effects not being included in 
the model equation, or from distributions of effects being 
heavy-tailed. Among a number of alternative distributions 
that exhibit heavy tails, Student’s-t and Slash distributions 
are appealing because these are symmetric and converge 
to normal distributions as their corresponding degrees 
of freedom exceed 50-100. The objective of this study 
was to investigate, using simulation, the practicality of 
jointly estimating the degrees of freedom for the bivariate 
Slash distributions assumed for the residual effects. 
The goodness of fit of the normal, Student’s-t and Slash 
distributions was investigated for bivariate data simulated 
using Slash distributions of the residuals. The impact of the 
distributional assumptions was investigated for prediction 
of random effects and estimation of variance components.

MATERIAL and METHODS 

Statistical Model

A bivariate linear mixed model with normal/independent 
errors for animal i is 

� 

y i = Xib + Z is + Wih + ε i

where iy  is a vector of observations for two traits from 
animal i,   

� 

Xi ,   

� 

Zi  and   

� 

Wi  are design matrices for animal i, 
corresponding to the p-dimensional vector of fixed effects 
(e.g., gender), qs-dimensional vector of random sire effects 
and qh-dimensional vector of uncorrelated random herd 
effects.

The error term 

� 

ε i is uncorrelated between animals and 
bivariate heavy-tailed or normal for any particular animal     
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Here,   

� 

e i is a bivariate normally distributed vector with 
mean zero and variance

   

� 

R 0 . The scalar
 

� 

λi  
is a random 

positive variable with a density function of 

� 

p(λ | v)
 
with

 

� 

v  degrees of freedom (df ). Note that in this model the
 

scalar 

� 

λi
 
applies to the residuals of both traits so that

 values of
 

� 

λi
 
approaching 0 produce heavy-tailed residuals

 for both traits.

Prior and Posterior Distributions

The Bayesian approach requires specifying prior 
distributions for the parameters of interest. A totally 
uninformative or flat prior was assumed for the fixed 
effects ( b ). A bivariate normal prior 

  

� 

s | G0,A ~ N(0,A ⊗ G0)  

was assigned for random sire effects   

� 

s1,s2,..,sq s[ ]′  with 

  

� 

si = si1,si2[ ]′
 
representing the two traits for sire i. The 

variance-covariance matrix is a kronecker product of  
the numerator relationship matrix A, representing 
covariances between the sires, and a 2x2 variance-

covariance matrix, 
  

� 

G0 =
σ s1

2 σ s12

σ s21 σ s2
2

 

 
 

 

 
 , for the sire effects.

A similar bivariate normal prior

  

� 

h | H0 ~ N(0,  I ⊗ H0)

was assigned from herd effects, except that these effects 
between herds were uncorrelated as evident by the use of 
the identity matrix I in the kronecker product and the 
effects between traits within herd were uncorrelated as 

shown by diagonal
   

� 

H0 =
σ h1

2 0
0 σ h2

2

 

 
 

 

 
 .

Inverted Wishart (IW2) distributions were assigned for 
G0 , H0  and R0 : 

� 

Ψ | Kφ ,κφ ~ IW2 κφ − 2 −1[ ]Kφ ,κφ( ) 

where 

� 

Kφ = E(Ψ | Kφ ,κφ )
 and 

� 

κφ  are degrees of free- 

doms of IW2 for 

� 

Ψ = G0, 

� 

H0  or 

� 

R0 , and 

� 

φ =  

� 

s, 

� 

h  or 

� 

e .

In equation (2), 

� 

λi  is an unknown “weight” variable, 
and is applied to both traits of animal i. There are many 

possible distributional assumptions on 

� 

λi , each yielding a 
different specification on the distribution of the residuals 

� 

ε i relative to the use of the Gaussian distribution 1,2. 
Bivariate Slash (BS) distributions as an alternative to the 
bivariate Gaussian or normal distribution are specifically 
considered in this study. 

The distribution of 

� 

λi  in equation (2) for BS is a 

� 

Beta(v,  1)  distribution with density function

� 

p(λi | v) = vλi
v−1  

  
where 

� 

0 < λi ≤1, i=1, 2, …, n and 

� 

v > 0  is v parameter. 
That results in a BS distribution specification for 

� 

p(ε i | R0,v) , with parameter   

� 

R 0  and df 

� 

v  such that the 

marginal variance of
 

� 

ε i
 
is

   

� 

R E =
v

v −1
R 0 .  A truncated

 
Gamma prior 

� 

(α,  β) , with small positive values of 

� 

α  and 

� 

β  (

� 

β << α ), is adopted for 

� 

v  in (6), so that the prior 

density is then

     (1)

     (2)

                  (3)

             (4)

                   (5)

                                            (6)
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� 

p(v |α,β) ∝vα−1 exp −βv{ }I v >1{ } 

with 

� 

v  greater than 1.

The joint posterior density of all unobservables is then:

  

� 

p(b,s,h,G0,H0,R 0,λ,v | y) ∝
1

(2π )
1
2
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× p(λ | v) × p(v |η)

where 

� 

′ λ = (λ1,λ2,...,λn ) .

Inferences on parameters of interest can be made 
using Gibbs sampling 3,4. The fully conditional posterior 
distributions of each of the unknown parameters are used 
to generate proposal samples from the target distribution 
(the joint posterior), which are accepted with probability 
equal to 1. The fully conditional posterior distribution of  
  

� 

b  is a Gaussian. Likewise, the conditional posterior 
distributions of sire effects (  

� 

s ) and herd effects (  

� 

h ) are 
Gaussian. 

Combining terms associated with   

� 

G0  and   

� 

H0  from the 
joint posterior density (8), the fully conditional posterior 
densities of   

� 

G0  and   

� 

H0  are:

  

and

  

which are IW2. Similarly, the fully conditional p osterior 
distribution for   

� 

R 0  is also inverted Wishart

with parameters 

� 

ω = n + κe  and

   

� 

Ωe = (κe − 2 −1)Ke + λi y i −µ i( ) y i −µ i( )′
i=1

m

∑
 

For each element of the unobservable vector 

� 

′ λ = (λ1,λ2,...,λn ) , the fully conditional posterior dis- 

tribution of 

� 

λi  for animal i is independent of that of 

� 

λ j  for 
animal j. Thus, the fully conditional posterior distribution 

of 

� 

λi  

� 

(i =1,2,...,n)  for the BS model is  

for 

� 

0 < λi <1, which is a Truncated - Gamma distribution 

here 

� 

α = v +1 and
   

� 

β =
1
2

y i −µ i( )′R 0
−1 y i −µ i( ) 

  
 
  

 

The fully conditional posterior distribution of v  is:

 

This is a Gamma distribution

  

� 

v | b,s,h,G0,H0,R 0,λ,y ~ Gamma(n + a,b − log λi
i=1

n

∑ )

 

2.

                              (8)

      (9)

(10)

           (11)

   (12)  

(13)

               (14)

p(G0 | b,s,h,H0,R 0,,v,y) G0
(

qs  s 21
2

) exp 
1
2

tr ( s  2 1)Ks  Qs G0
1 








p(H0 | b,s,h,G0,R 0,,v,y) H0
(

qh  h 21
2

) exp 
1
2

tr (h  2 1)Kh  Qh H0
1 








p(R 0 | b,s,h,G0,H0,,v,y) R 0
(21

2
) exp 

1
2

tr eR 0
1 








p(i | b,s,h,G0,H0,R 0, i,v,y i) (i)
v exp 

i

2
y i  i R 0

1 y i  i 








i |b,s,h,R0, i,v,y i ~ TruncatedGamma(,)       0  i 1

p(v | b,s,h,G0,H0,R 0,,y)vna1 exp v b logi
i1

n




















p(G0 | b,s,h,H0,R 0,,v,y) G0
(

qs  s 21
2

) exp 
1
2

tr ( s  2 1)Ks  Qs G0
1 








p(H0 | b,s,h,G0,R 0,,v,y) H0
(

qh  h 21
2

) exp 
1
2

tr (h  2 1)Kh  Qh H0
1 








p(R 0 | b,s,h,G0,H0,,v,y) R 0
(21

2
) exp 

1
2

tr eR 0
1 








p(i | b,s,h,G0,H0,R 0, i,v,y i) (i)
v exp 

i

2
y i  i R 0

1 y i  i 








i |b,s,h,R0, i,v,y i ~ TruncatedGamma(,)       0  i 1

p(v | b,s,h,G0,H0,R 0,,y)vna1 exp v b logi
i1

n




















p(G0 | b,s,h,H0,R 0,,v,y) G0
(

qs  s 21
2

) exp 
1
2

tr ( s  2 1)Ks  Qs G0
1 








p(H0 | b,s,h,G0,R 0,,v,y) H0
(

qh  h 21
2

) exp 
1
2

tr (h  2 1)Kh  Qh H0
1 








p(R 0 | b,s,h,G0,H0,,v,y) R 0
(21

2
) exp 

1
2

tr eR 0
1 








p(i | b,s,h,G0,H0,R 0, i,v,y i) (i)
v exp 

i

2
y i  i R 0

1 y i  i 








i |b,s,h,R0, i,v,y i ~ TruncatedGamma(,)       0  i 1

p(v | b,s,h,G0,H0,R 0,,y)vna1 exp v b logi
i1

n




















p(G0 | b,s,h,H0,R 0,,v,y) G0
(

qs  s 21
2

) exp 
1
2

tr ( s  2 1)Ks  Qs G0
1 








p(H0 | b,s,h,G0,R 0,,v,y) H0
(

qh  h 21
2

) exp 
1
2

tr (h  2 1)Kh  Qh H0
1 








p(R 0 | b,s,h,G0,H0,,v,y) R 0
(21

2
) exp 

1
2

tr eR 0
1 








p(i | b,s,h,G0,H0,R 0, i,v,y i) (i)
v exp 

i

2
y i  i R 0

1 y i  i 








i |b,s,h,R0, i,v,y i ~ TruncatedGamma(,)       0  i 1

p(v | b,s,h,G0,H0,R 0,,y)vna1 exp v b logi
i1

n




















p(G0 | b,s,h,H0,R 0,,v,y) G0
(

qs  s 21
2

) exp 
1
2

tr ( s  2 1)Ks  Qs G0
1 








p(H0 | b,s,h,G0,R 0,,v,y) H0
(

qh  h 21
2

) exp 
1
2

tr (h  2 1)Kh  Qh H0
1 








p(R 0 | b,s,h,G0,H0,,v,y) R 0
(21

2
) exp 

1
2

tr eR 0
1 








p(i | b,s,h,G0,H0,R 0, i,v,y i) (i)
v exp 

i

2
y i  i R 0

1 y i  i 








i |b,s,h,R0, i,v,y i ~ TruncatedGamma(,)       0  i 1

p(v | b,s,h,G0,H0,R 0,,y)vna1 exp v b logi
i1

n




















p(G0 | b,s,h,H0,R 0,,v,y) G0
(

qs  s 21
2

) exp 
1
2

tr ( s  2 1)Ks  Qs G0
1 








p(H0 | b,s,h,G0,R 0,,v,y) H0
(

qh  h 21
2

) exp 
1
2

tr (h  2 1)Kh  Qh H0
1 








p(R 0 | b,s,h,G0,H0,,v,y) R 0
(21

2
) exp 

1
2

tr eR 0
1 








p(i | b,s,h,G0,H0,R 0, i,v,y i) (i)
v exp 

i

2
y i  i R 0

1 y i  i 








i |b,s,h,R0, i,v,y i ~ TruncatedGamma(,)       0  i 1

p(v | b,s,h,G0,H0,R 0,,y)vna1 exp v b logi
i1

n




















p(G0 | b,s,h,H0,R 0,,v,y) G0
(

qs  s 21
2

) exp 
1
2

tr ( s  2 1)Ks  Qs G0
1 








p(H0 | b,s,h,G0,R 0,,v,y) H0
(

qh  h 21
2

) exp 
1
2

tr (h  2 1)Kh  Qh H0
1 








p(R 0 | b,s,h,G0,H0,,v,y) R 0
(21

2
) exp 

1
2

tr eR 0
1 








p(i | b,s,h,G0,H0,R 0, i,v,y i) (i)
v exp 

i

2
y i  i R 0

1 y i  i 








i |b,s,h,R0, i,v,y i ~ TruncatedGamma(,)       0  i 1

p(v | b,s,h,G0,H0,R 0,,y)vna1 exp v b logi
i1

n




















p(G0 | b,s,h,H0,R 0,,v,y) G0
(

qs  s 21
2

) exp 
1
2

tr ( s  2 1)Ks  Qs G0
1 








p(H0 | b,s,h,G0,R 0,,v,y) H0
(

qh  h 21
2

) exp 
1
2

tr (h  2 1)Kh  Qh H0
1 








p(R 0 | b,s,h,G0,H0,,v,y) R 0
(21

2
) exp 

1
2

tr eR 0
1 








p(i | b,s,h,G0,H0,R 0, i,v,y i) (i)
v exp 

i

2
y i  i R 0

1 y i  i 








i |b,s,h,R0, i,v,y i ~ TruncatedGamma(,)       0  i 1

p(v | b,s,h,G0,H0,R 0,,y)vna1 exp v b logi
i1

n




















p(G0 | b,s,h,H0,R 0,,v,y) G0
(

qs  s 21
2

) exp 
1
2

tr ( s  2 1)Ks  Qs G0
1 








p(H0 | b,s,h,G0,R 0,,v,y) H0
(

qh  h 21
2

) exp 
1
2

tr (h  2 1)Kh  Qh H0
1 








p(R 0 | b,s,h,G0,H0,,v,y) R 0
(21

2
) exp 

1
2

tr eR 0
1 








p(i | b,s,h,G0,H0,R 0, i,v,y i) (i)
v exp 

i

2
y i  i R 0

1 y i  i 








i |b,s,h,R0, i,v,y i ~ TruncatedGamma(,)       0  i 1

p(v | b,s,h,G0,H0,R 0,,y)vna1 exp v b logi
i1

n




















p(G0 | b,s,h,H0,R 0,,v,y) G0
(

qs  s 21
2

) exp 
1
2

tr ( s  2 1)Ks  Qs G0
1 








p(H0 | b,s,h,G0,R 0,,v,y) H0
(

qh  h 21
2

) exp 
1
2

tr (h  2 1)Kh  Qh H0
1 








p(R 0 | b,s,h,G0,H0,,v,y) R 0
(21

2
) exp 

1
2

tr eR 0
1 








p(i | b,s,h,G0,H0,R 0, i,v,y i) (i)
v exp 

i

2
y i  i R 0

1 y i  i 








i |b,s,h,R0, i,v,y i ~ TruncatedGamma(,)       0  i 1

p(v | b,s,h,G0,H0,R 0,,y)vna1 exp v b logi
i1

n




















p(G0 | b,s,h,H0,R 0,,v,y) G0
(

qs  s 21
2

) exp 
1
2

tr ( s  2 1)Ks  Qs G0
1 








p(H0 | b,s,h,G0,R 0,,v,y) H0
(

qh  h 21
2

) exp 
1
2

tr (h  2 1)Kh  Qh H0
1 








p(R 0 | b,s,h,G0,H0,,v,y) R 0
(21

2
) exp 

1
2

tr eR 0
1 








p(i | b,s,h,G0,H0,R 0, i,v,y i) (i)
v exp 

i

2
y i  i R 0

1 y i  i 








i |b,s,h,R0, i,v,y i ~ TruncatedGamma(,)       0  i 1

p(v | b,s,h,G0,H0,R 0,,y)vna1 exp v b logi
i1

n




















p(G0 | b,s,h,H0,R 0,,v,y) G0
(

qs  s 21
2

) exp 
1
2

tr ( s  2 1)Ks  Qs G0
1 








p(H0 | b,s,h,G0,R 0,,v,y) H0
(

qh  h 21
2

) exp 
1
2

tr (h  2 1)Kh  Qh H0
1 








p(R 0 | b,s,h,G0,H0,,v,y) R 0
(21

2
) exp 

1
2

tr eR 0
1 








p(i | b,s,h,G0,H0,R 0, i,v,y i) (i)
v exp 

i

2
y i  i R 0

1 y i  i 








i |b,s,h,R0, i,v,y i ~ TruncatedGamma(,)       0  i 1

p(v | b,s,h,G0,H0,R 0,,y)vna1 exp v b logi
i1

n




















                        (7)



98
An Evaluation of Robust Linear ...

Simulation Study

A simulation study was carried out using two models 
for simulating the bivariate data. We refer to the model 
used to simulate the data as the true model. These two 
models were the Slash distributions with v = 4 (BS-4) or v = 
12 (BS-12) degrees of freedom.

Two replicated datasets were generated for each of 
the two true models (BS-4 and BS-12). Phenotypes of 
2500 progeny from 50 unrelated sires for two traits were 
simulated using Equation (1).

T h e  m o d e l  i n c l u d e d  a  g e n d e r  e f f e c t  i n    

� 

b ,

  

� 

G0 =
σ s1

2 = 2.0 σ s12 =1.5
σ s21 =1.5 σ s2

2 = 4.0

 

 
 

 

 
 ,   

� 

h  comprising 100 herds

with
   

� 

H0 =
σ h1

2 =1.5 0
0 σ h2

2 = 6.0

 

 
 

 

 
 

  
and res iduals

 

  

� 

e i ~ N 0,  R0( ) where
   

� 

R 0 =
σ e1

2 =15.0 σ e12 = 4.0
σ e 21 = 4.0 σ e2

2 = 20.0

 

 
 

 

 
 .

 

For each animal i, 

� 

λi  was generated from 

� 

p λi | v( )= vλi
v−1

 
for BS-4 and BS-12. Offspring were randomly distributed to 
herd and gender groups by using uniform distribution.

Fitted Model

Data generated from each of the 2 true models (BS-4, 
BS-12), were analyzed in 3 alternative fitted bivariate 
models. These were the model (BN) assuming normally 
distributed residuals, and the models assuming heavy-
tailed distributions according to the Student’s-t (BSt) or 
Slash (BS) distributions with v treated as an unknown. 
Inferences on parameters are made from their marginal 
posteriors estimated using the Markov Chain Monte Carlo 
(MCMC) sampling process described previously.

MCMC Implementation

Bayesian inference was based on 50.000 post burn-in 
MCMC chains following 50.000 cycles of burn-in for each 
of the 3 fitted models applied to each replicate of the 
data simulated from the 2 true models. The length of the 
burn-in was judged by inspection of the plots of samples 
across rounds to ensure convergence. Every post-burn-
in successive sample was retained for each replicate, and 
inferences were based on the pool of 100.000 samples taken 
from the two replicates fitted in each scenario involving a 
fitted and true model combination. Posterior means of the 
parameters were obtained from their respective marginal 
posterior densities. Interval estimates were determined as 
posterior probability intervals (95% PPI) obtained from the 
2.5 and 97.5 percentiles of each posterior density. 

Model Comparison

Distinguishing the goodness of fit of the 3 fitted models 
applied to each of the 2 true models was done by comparing 
predictive log-likelihoods (PLL) for different fitted models. 
Predictive log-likelihood over all observations (n) under 
Model 

� 

Mk  (k = BN, BSt or BS) was obtained as:

  

� 

PLLk = log
i=1

n

∑  p(y i | y(− i),Mk ) = log
i=1

n

∑ 1
G

p−1(y i | θ( j),Mk )
j=1

G

∑
 

 
  

 

 
  

−1

 
 

where

 

� 

1
G

p−1(y i | θ( j),Mk )
j=1

G

∑
 

 
  

 

 
  

−1

 

is the harmonic mean

 

of 

� 

p(y i | θ( j),Mk )  across G MCMC samples 5. Differences 
exceeding 2 were assumed to be significant 6.

The impact of alternative models on selection was 

quantified by computing the correlations (  

� 

rˆ S ,S) between 
the simulated true   

� 

(s)  and predicted   

� 

(ˆ s ) sire effects in 
each of the three fitted models. Further, the prediction 
error variance (PEV) (  

� 

V (s − ˆ s ) ) of the sire effects was calculated to provide an informative comparative 
assessment of model prediction performance. Higher 
correlations and lower prediction error variances will be 
associated with fitted models that are better at predicting 
breeding values than models with low correlations and 
high prediction error variance. Some fitted models might 
be significantly better than others from a likelihood 
framework, yet have little impact on selection response if 
they do not markedly change correlations. Minimizing the 
prediction error variances is important when investment 
decisions depend upon the magnitude of the sire 
predictions, not just the ranking of the sires.

RESULTS

Model Comparison

The predictive log-likelihood values in Table 1 were 
computed for BSt, BS and BN models fitted to the simulated 
BS-4 and BS-12 datasets. The fitted models with heavy tails 
(BSt and BS) for BS-4 datasets were significantly better 
than the normal model (BN), with hardly any difference 
between BSt and BS. However, the models BSt, BS and BN 
fit the BS-12 datasets almost equally well, which means 
that v = 12 in Slash distribution provides almost normally 
distributed datasets. Also, PLL results in Table 1 indicated 
that the difference in PLL between the fitted models with 
heavy tails and the normal model was inversely related 
to the degrees of freedom of the simulated residuals. In 
summary, regardless of how the residuals were simulated, 
PLL was the similar for the heavy-tailed fitted models, 
where the v was treated as an unknown. This indicates 
that both (BSt and BS) models fit the data equally well.  

(15)
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The normal fitted model, however, did not perform well  
for the datasets having low degrees of freedom (v<4).

Posterior distributions of degrees of freedom from BSt 
or BS fitted models, and their posterior mean (M) and 95% 
posterior probability intervals (L and U) were given in Fig. 1. 
Posterior distributions of v were reasonably symmetric 
when the fitted model was the true model. The posterior 
means of v were 4.7 and 16 from the fitted model BS for 
BS-4 and BS-12 and agreed well with the true values of v. 
As seen in Fig. 1, posterior mean estimate of v seems 
unbiased and sharp, and 95% posterior probability interval 
concentrated on low v values for BS-4 datasets.

However, the posterior means of v were 32.7 and 
142.5 from the fitted model BSt for BS-4 and BS-12, and 
was higher than the true value. This indicates that BSt 
with v degrees of freedom agrees with BS with degrees of 
freedom less than v. 

Average correlation between true and estimated sire 
effects and average PEV from two replicates using BSt, BS 
and BN fitted models are presented in Table 2. When the 
true model was BS, the both criteria (correlation and PEV) 
indicate that the heavy-tailed fitted models seem not to  
be superior on normal model, especially when the true 
value of v=4. This is not surprising as from Fig. 1 we can 
observe that BS-4 corresponds to a BSt-v with v about 30. 

Estimation of Variance Components

Table 3 summarizes inferences on sire, herd and error 
variances based on the replicated datasets from the two 
different populations (BS-4 and BS-12), comparing BSt, BS 
and BN fitted models. Posterior mean estimates of (co)
variances from three fitted models were found to be similar 
within each of two population; however, they were 
different across populations. Posterior mean estimates of 

� 

σ h1
2

 for BS-12 and 

� 

σ h2
2

 for BS-4 were sharp and unbiased 

in herd variances. Estimates of 

� 

σ h1
2

 for BS-4 and 

� 

σ h2
2

 for BS-12 seemed to be upward biased. The 95% posterior 
probability intervals for herd variance components from 
the three fitted models widely overlapped and included 
the true parameter values. Heritabilities of simulated 
bivariate traits were 

� 

h1
2

 = 0.36 and 

� 

h2
2

 = 0.44 for BS-4 and 

� 

h1
2

 
= 0.40 and 

� 

h2
2

 
= 0.52 for BS-12. Posterior mean estimates 

of sire (co)variances from BSt, BS and BN fitted models 
were identical in BS-4 and BS-12 populations. As the 
posterior mean of

 

� 

σ s2
2

 
for BS-4 was over estimated,

 posterior mean estimates of other sire (co)variances for 
BS-4 and BS-12 populations were found to be sharp and 
seemingly unbiased. True parameters of sire (co)variances 

were included by 95% equal-tailed posterior probabilityrval 
of parameters (Table 3). The marginal error (co)variance 

Table 1. Predictive log-likelihood1 (PLL) comparisons between bivariate Student’s-t (BSt), Slash (BS) and normal (BN) fitted models (in column) for BS-4 
and BS-12 datasets

Tablo 1. BS-4 ve BS-12 veri setleri için uygulanan bivaryet Student’s-t (BSt), Slash (BS) ve normal (BN) modellerine ait tahmini log-likelihood (PLL) 
değerlerinin karşılaştırması

True Model 2 - DF

Fitted Model 3

BSt BS BN

Rep1 Rep2 Rep1 Rep2 Rep1 Rep2

BS-4 -957 -930 -957 -931 -961 -939

BS-12 -446 -531 -445 -531 -445 -532

1 Predictive log-likelihood values were reported after adding 14000, 2 Used to simulate data, 3 Used in analysis of simulated data

Fig 1. Marginal posterior densities 
of degrees of freedom estimated by 
true and fitted models

M represents posterior mean, L 
represents the 2.5th percentiles of the 
posterior density, U represent 97.5th 
percentiles of the posterior density

Şekil 1. Gerçek ve uygulanan model- 
ler ile tahmin edilen serbestlik dere-
celerine ait marjinal son yoğunluklar
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components were estimated by using 

� 

ˆ R E =
ˆ v 

ˆ v −1
ˆ R 0

 
within BS-4 and BS-12 populations. As seen from the 
formula, marginal error (co)variances are the function of 
degrees of freedom and true marginal error (co)variances 
are different across populations (BS-4 and BS-12). 
Inferences on marginal error (co)variance components 
using the BSt, BS and BN fitted models were found to be 
similar within BS-4 and BS-12 populations and true 
marginal error parameter values were covered by 95% 
equal-tailed PPI of parameters (Table 3). 

DISCUSSION 

Bayesian techniques are capable of fitting models 
where residuals have a heavy-tailed (Student’s-t or Slash) 
distribution with unknown degrees of freedom. Although 
Student’s-t distribution within heavy-tailed densities is 
used as a viable alternative to normal distribution in 
linear mixed effects models, there is not enough study 
about Slash distribution as a robust alternative to normal 
distribution. This article discusses a MCMC Bayesian 
implementation of bivariate linear mixed effects model 

Table 2. Average correlations (r) between true and predicted sire effects from two replicates and prediction error variance (PEV) of sire effects using the 
bivariate Student’s-t (BSt), Slash (BS) and normal (BN) fitted models with different residual degrees of freedom (DF)

Tablo 2. Bivaryet Student’s-t (BSt), Slash (BS) ve normal (BN) modelleri uygulanarak tahmin edilen baba etkileri ile gerçek değerleri arasındaki ortalama 
korelasyon ve baba etkilerine ait tahmin hata varyansları

True Model 1 - DF

Fitted Model 2

Trait1 Trait2

BSt BS BN BSt BS BN

r PEV r PEV r PEV r PEV r PEV r PEV

BS-4 0.92 0.35 0.92 0.35 0.92 0.35 0.94 0.48 0.94 0.48 0.94 0.48

BS-12 0.93 0.29 0.93 0.29 0.93 0.29 0.95 0.37 0.95 0.37 0.95 0.37

1 Used to simulate data, 2 Used in analysis of simulated data

Table 3. Posterior inference on sire, herd and marginal error (co)variances using the bivariate Student’s-t (BSt), Slash (BS) and normal (BN) fitted models

Tablo 3. Bivaryet Student’s-t (BSt), Slash (BS) ve normal (BN) modelleri kullanılarak elde edilen baba, sürü ve marjinal hata varyans-kovaryans değerleri

True Parameters True Model1 – DF

Fitted Model2

BSt BS BN

PM3 95% PPI4 PM 95% PPI PM 95% PPI

� 

σ S1
2

 
= 2.0

BS-4 1.94 [1.13, 3.18] 1.94 [1.13, 3.18] 1.97 [1.15, 3.21]

BS-12 2.28 [1.34, 3.70] 2.28 [1.34, 3.69] 2.28 [1.34, 3.69]

� 

σ S12
2

 
= 1.5

BS-4 1.56 [0.11, 3.57] 1.56 [0.13, 3.56] 1.56 [0.11, 3.57]

BS-12 1.23 [0.29, 2.49] 1.24 [0.30, 2.49] 1.24 [0.30, 2.50]

� 

σ S2
2

 
= 4.0

BS-4 5.18 [2.30, 9.79] 5.18 [2.29, 9.84] 5.12 [2.26, 9.72]

BS-12 3.78 [2.33, 5.95] 3.79 [2.33, 5.99] 3.79 [2.34, 6.00]

� 

σ h1
2

 
= 1.5

BS-4 1.98 [1.29, 2.90] 1.98 [1.29, 2.89] 1.98 [1.29, 2.90]

BS-12 1.66 [0.81, 2.80] 1.66 [0.81, 2.80] 1.66 [0.81, 2.80]

� 

σ h2
2

 = 6.0
BS-4 6.02 [4.11, 8.55] 6.04 [4.13, 8.56] 6.12 [4.20, 8.64]

BS-12 7.12 [5.05, 9.84] 7.11 [5.04, 9.86] 7.10 [5.03, 9.86]

� 

σ E1
2

 
= 20.0 BS-4 19.16 [17.49, 20.92] 19.17 [17.48, 20.95] 19.15 [17.55, 20.86]

� 

σ E1
2

 
= 16.4 BS-12 16.61 [15.09, 18.25] 16.61 [15.09, 18.24] 16.61 [15.09, 18.24]

� 

σ E12
2

 
= 5.3 BS-4 5.73 [4.48, 6.99] 5.74 [4.51, 6.99] 5.73 [4.51, 6.98]

� 

σ E12
2

 
= 4.4 BS-12 4.71 [3.72, 5.74] 4.70 [3.72, 5.73] 4.71 [3.72, 5.74]

� 

σ E 2
2

 
= 26.7 BS-4 27.22 [25.27, 29.36] 27.24 [25.28, 29.38] 27.19 [25.35, 29.14]

� 

σ E 2
2

 
= 21.8 BS-12 21.60 [20.38, 22.89] 21.59 [20.37, 22.87] 21.58 [20.37, 22.86]

1 Used to simulate data, 2 Used in analysis of simulated data, 3 Posterior mean, 4 95% equal-tailed posterior probability interval based on the 2.5th and 97.5th 
percentiles of the posterior density
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with Slash distributed errors as a robust alternative to 
normally or Student’s-t distributed linear models. The 
objectives were to obtain inference on robustness para-
meter (degrees of freedom) and variance components. Our 
approach was illustrated with Slash distributed bivariate 
datasets simulated based on 4 or 12 degrees of freedom 
and the goodness of fit of the normal, Student’s-t and  
Slash distributions was investigated for these datasets.

Model comparisons, using predictive log likelihood 
(PLL), typically favoured the heavy-tailed models over the 
normal model for BS-4 datasets, but not for BS-12 datasets. 
There was little difference in PLL between Student’s-t and 
Slash approaches.

Inferences on degrees of freedom parameter from BSt 
fitted model in BS-4 and BS-12 populations indicated that 
the values of 4 and 12 of degrees of freedom in BS model 
corresponded to the values of 32 and 142 of degrees of 
freedom in BSt model. These results showed that heavy-
tailed datasets could be simulated using lower degrees 
of freedom than four in BS models, and there were no 
difference between BS and BN models when the degrees 
of freedom approached to 12 in BS models. 

Despite the difference between the fitted models in 
terms of PLL, the benefits of heavy-tailed models were 
only modest in improving the correlation between true 
and predicted sire merit. However, the simulated data 
represented better-balanced data in terms of the 
distribution of offspring by gender and herd than would 
often be the case in field data.  Further, all sires had equal 
numbers of offspring, and these numbers were sufficient 
for reliable assessment of sires in all models. It would be 

expected that the superiority of heavy-tailed methods 
would increase in applications to field data. 

Estimates of marginal error (co)variance components 
using the BS fitted model were biased up in some situations. 
The extra effort to treat degrees of freedom as an unknown 
was negligible. These methods need to be further explored 
with field data, and in other animal breeding applications 
such as QTL detection and genomic selection.

Acknowledgements

This project was supported by grant TUBITAK TOVAG-
107O915 from the Scientific and Technological Research 
Council of Turkey (Project coordinator: Dr. Kadir KIZILKAYA). 
We are grateful to I. Misztal for making available Sparsem90 
and Fspak90.

REFERENCES

1. Lange K, Sinsheimer JS: Normal/independent distributions and their 
applications in robust regression. J Am Stat Assoc, 2, 175-198, 1993. 

2. Rosa GJM, Padovani CR, Gianola D: Robust linear mixed models with 
normal/ independent distributions and Bayesian MCMC implementation. 
Biom J, 45, 573-590, 2003. 

3. Geman D, Geman S: Stochastic relaxation, Gibbs distributions, and the 
Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell, 6, 721-
741, 1984.

4. Gelfand AE, Smith AFM: Sampling based approaches to calculating 
marginal densities. J Am Stat Assoc, 85, 398-409, 1990. 

5. Gelfand AE: Model determination using sampling-based methods. 
In, Markov Chain Monte Carlo in Prac-tice. pp. 145-161, Chapman & Hall, 
London, U.K, 1996. 

6. Raftery AE: Hypothesis testing and model selection. In, Markov Chain 
Monte Carlo in Prac-tice. pp. 163-187, Chapman & Hall, London, U.K, 1996.


	18 (1): 95-101, 2012
	RESEARCH ARTICLE
	An Evaluation of Robust Linear Mixed Models for Bivariate Datasets with Slash Distributed Residuals [1]
	Makale Kodu (Article Code): KVFD-2011-5108
	Summary
	Hata Terimleri Slash Dağılımı Gösteren Bivaryet Veri Setlerinin Dirençli Doğrusal Karışık Modellerle Değerlendirilmesi
	Özet
	INTRODUCTION
	MATERIAL and METHODS
	RESULTS
	DISCUSSION
	REFERENCES


