Comparison of Culture and PCR for Detection of Field Isolates of Bovine Milk Mollicutes

Abd Al-Bar AL-FARHA 1,a, Farhid HEMMATZADEH 2,b, Rick TEARLE 3,c, Razi JOZANI 4,d, Andrew HOARE 5,e, Kiro PETROVSKI 6,f

1 Department of Animal Production, Technical Agricultural College, Northern Technical University, Mosul, IRAQ
2 University of Adelaide, School of Animal and Veterinary Sciences, South Australia, AUSTRALIA
3 Davies Centre, The University of Adelaide, School of Animal and Veterinary Sciences, South Australia, AUSTRALIA
4 Tabriz University, Department of Veterinary Clinical Sciences, Tabriz, IRAN
5 South East Vets, South Australia, AUSTRALIA
6 Australian Centre for Antimicrobial Resistance Ecology, The University of Adelaide, School of Animal and Veterinary Sciences, South Australia, AUSTRALIA

Abstract

Mycoplasma mastitis raises significant concerns in the dairy industry worldwide. The study objective was to develop an accurate and rapid screening method for identification of field isolates of Mycoplasma and Acholeplasma species and investigate relative merits of conventional microbial culture versus PCR-based method for detecting Mycoplasma and Acholeplasma species in bovine milk. A total of 368 milk samples collected at individual cow level from a single dairy farm in South Australia, 192 (52%) tested positive for mollicutes using a conventional culture-based method. DNA extracted directly from milk and used for amplification through specifically designed universal mollicutes PCR-based method. Of them, 269 (73%) tested positive. Sequencing results of 30 positive samples targeting the 16S rRNA gene, showed five different mollicutes species involved, including Acholeplasma laidlawii, Acholeplasma axanthum, Mycoplasma arginini, Mycoplasma bovirhinis, Mycoplasma bovis. According to these results, species-specific PCR was conducted on all samples. DNA amplifications using species-specific PCR yielded 256 (70%) positive mollicutes samples. The developed universal PCR demonstrated best concordance with species-specific PCR (Cohen’s Kappa = 0.747±0.031). Co-infection by two or more of the above-mentioned mollicutes showed highest prevalence. It is recommended surveying mollicutes using the universal PCR used in this study. The PCR system used in this study showed significant rapidity and sensitivity compared to the conventional bacteriological culture method for screening Mycoplasma and Acholeplasma species in dairy herds.

Keywords: Mycoplasma, Mastitis, Dairy cattle, Acholeplasma

Siğır Sütü Mollekütlerinin Saha İzolatlarının Tespiti İçin Kültür ve PCR Yöntemlerinin Karşılıştırma

Öz

INTRODUCTION

Mycoplasmas and Acholeplasma are the smallest bacteria, belonging to the mollicutes class, and some of these mollicutes can cause many infections in cattle. Diseases caused by Mycoplasma species occur worldwide causing serious problems for the dairy and beef feedlot industries and impose significant economic impact [1-3]. Specific concerns regarding Mycoplasma arise from difficulty of detection, a wide range of transmission methods, long persistence in affected herds, poor response to antimicrobials and the tendency to cause mixed infections [4-6]. Mycoplasma species leads to clinical, subclinical or chronic mastitis in cattle [4]. Among 200 of Mycoplasma species discovered, several species have been identified to be responsible for mastitis in cattle, or isolated occasionally from milk including Mycoplasma. arginine, M. bovirhinis, M. bovigenitalium, M. bovis, M. californium, M. canadense, M. dispar, Mycoplasma species bovine group 7 and F-38 [8,9]. M. bovis is the most common pathogen causing mastitis [6]. Some studies claim that Acholeplasma species, another genus of the mollicutes class, considered as non-pathogenic saprophyte and milk contaminant [7,8]. However, other studies have shown that involving of A. laidlawii in mastitis cannot be excluded [9-11]. Additionally, Acholeplasma axanthum has been isolated from bovine milk harvested from cattle suffering from mastitis [4]. Identification of milk Mycoplasma is often achieved using conventional bacteriological culture method or through serological determination methods. However, both detection methods have the significant limitation of a prolonged sampling to results timeframe [12,13]. Mycoplasma species can cause bovine mastitis cases either individually or as co-Mycoplasma infection [14]. Currently, most molecular studies focus on a single Mycoplasma species invader (usually M. bovis) and disregard potential co-infection. Few recent studies have included multiple Mycoplasma and Acholeplasma species in milk using multiplex PCR [15,16]. However, the universal PCR detailed in this work expands to few more common milk mollicutes including species not been reported previously, like A. axanthum and M. bovirhinis. Previous studies have reported co-infections of limited variety. Current knowledge does not inform the reader of the potential combinations and their effect on milk composition and yield. Detection of Mycoplasma species using 16S rRNA as a molecular marker has been previously evaluated [17-19]. The usefulness of 16S rRNA gene was demonstrated in detecting slow-growing bacteria [20]. However, most previous studies targeted species-specific oligonucleotides and disregarded co-infection of Mycoplasma and Acholeplasma species. The clinical importance of co-infection with Mycoplasma has been reported [9,21]. Given that mollicutes have a small genome and low G-C content [22], a sensitive, accurate and broad-species detection is required. Implementation of a rapid, reliable and affordable screening method can be used in eradication strategies of Mycoplasma mastitis at quarter, cattle, herd and national level.

The aim of our study was to develop a rapid, accurate and reliable screening method for identification of mollicutes, and analyse the concordance between our universal PCR, species-specific PCR and conventional bacteriological culture isolation and identification in bovine milk samples from a single commercial dairy farm in South Australia.

MATERIAL and METHODS

Samples Collection

Milk samples were collected aseptically in sterile 50 mL tubes at individual cow level from a single commercial dairy farm near Mount Gambier/South Australia. Cows had high somatic cell counts and the farm had experienced repeated failure of mastitis treatment at the time of sampling. A total of 368 milk samples were collected from each functional quarter. Milk samples were kept on ice and sent immediately to the laboratory at the School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia. Milk samples were subjected to conventional Mycoplasma culture, and remaining sample contents were frozen at -20°C and retained for molecular analysis.

Mollicutes Culture

Milk samples were subjected first to bacterial pre-enrichment process following the procedure described previously [23,24]. Detection of mollicutes colonies were performed using a stereomicroscope (Olympus SZ30, Vic, Australia) at 10x magnification. Positive culture samples were counted when there is growth on the mollicutes agar plate of at least one Mycoplasma-like colony [28]. The process of axenization of mollicutes was carried out by selecting 3-5 colonies from each plate then subcultured into the enriched Mycoplasma broth (Oxoid, Australia) and inoculated under the same conditions. When there was change of colour of phenol red indicator in Mycoplasma broth to yellow, the subculture onto a fresh broth and agar was carried out.

DNA Extraction

The DNA extraction was carried out directly, either from frozen milk or enriched samples and all tests were repeated on both type of samples. After thawing milk samples at ambient temperature, 2 mL of each milk sample was centrifuged at 8,000 g for 20 min to remove supernatant fat and excess liquid. The enriched samples in broth were used directly for DNA extraction. DNA was extracted using QIAmp DNA extraction kit (Qiagen, Germany) following the manufacturer’s instructions. Genomic DNA concentration measurement was carried out using Nanodrop 1000c (Thermofisher Scientific Inc., Waltham, MA, USA).
PCR Probes and Protocol

In our study, five different primers pairs were used for five separated PCR reactions. The universal primers, Mol-F: GGCGAAYGGGTAGTAAACAC and Mol-R: CATHG YCTTGGTTRGCGNTTA were designed targeting 16S rRNA gene at genus-level and generate amplicon (180 bp). Multiple sequence alignment of 16S rRNA gene was conducted on number of cattle-associated Mycoplasma and Acholeplasma using Clustal Omega software [26]. A block containing highly variable region, flanking by two conserve regions in upstream and downstream of the sequences, was selected. Based on general criteria for primer designing, forward and reverse primers were selected from conserved region of multiple blocks. The accuracy of the different primer sets for different blocks was checked by ATCC strains, PCR and sequencing. Acholeplasma laidlawii (Sabin) Edward and Freundt (ATCC® 23206-MINI-PACK™) and Mycoplasma bovis (ATCC® 25025™) were used as positive controls. M. bovis-specific 16S rRNA primers (442 bp), composed of PpSMS-1: 5’-CCAGCTCACTTATACATGAGCGC-3’ and PpSMS-2: 5’-TGACTCAAGAATCAGGACTATTTCC-3’ were used for M. bovis detection [12]; while the other three primers for A. laidlawii, M. arginini and M. bovirhinis were previously published elsewhere and cited in our previous work [9]. PCR reactions were carried out in 25 µL containing 0.25 µL Taq DNA polymerase (Bioline, UK), 5 µL of 5x reaction buffer (Bioline, UK), 1 µL (0.5 µM) of each forward and reverse primers (AGRF, Australia), 1 µL (approximately 20 ng) of template, and 16.75 µL of DEPC-treated water. The negative control was prepared from the same reagents of Master Mix (Bioline, UK), except DNA template, and the volume was compensated with DEPC water [27]. DNA was amplified for 35 PCR cycles conditions using T100™ Thermal Cycler (Biorad thermocycler, Australia), and consisted of pre-heating activation for 5 min at 95°C, denaturation at 95°C for 30 sec, annealing at 60°C for the universal primer, M. bovis and A. laidlawii; 55°C for M. arginini and 64°C for M. bovirhinis, and primer extension at 72°C for 45 sec. The final extension step was performed at 72°C for 10 min. The PCR products were analysed by 1.5% agarose gel electrophoresis and visualised by staining with Gel Red (Biotium, US). Selected species for this study were nominated based on the 16S rRNA sequencing of the universal PCR. The same PCR methods have been done on all isolated mycoplasmas to identify the isolate in sequencing of the PCR products. All tests were carried out in duplicate. Six samples for each positive 16S rRNA PCR detected species were submitted to the Australian Genome Research Facility Ltd (AGRF, Adelaide, South Australia) for Sanger sequencing according to the method described previously [19].

Statistical Analysis

Positive results of conventional bacteriological culture method, universal PCR and species-specific PCR were reported as number and percentage. Cohen’s Kappa coefficient test was used to identify the agreement between the abovementioned detection methods using (R version 3.1.1, R Development Core Team, New Zealand).

RESULTS

Of 368 milk samples collected at individual cow level from a single dairy farm in South Australia, the universal PCR used in this study showed higher prevalence of mollicutes in milk (73%) as compared to the conventional culture method (52%) (Table 1). Samples were considered as positive for culture growth when at least a single colony of mollicutes was identified. PCR results were confirmed using species-specific primers (according to 16S rRNA sequencing results) for A. laidlawii, M. arginini and M. bovirhinis. Using species-specific primers, co-infection with two or more of the aforementioned mollicutes was detected in 16S (45%); A. laidlawii was the highest individual species detected followed by M. bovis and M. bovirhinis, M. arginini while A. axanthum had the lowest prevalence (Fig. 1). In addition, 34% of samples were negative for culture and positive for either or both PCR methods (universal and species-specific). However, approximately 7% of positive samples were identified by culture but not by PCRs, 36 samples tested positive using the universal PCR, but negative using species-specific primers for A. laidlawii, M. bovis, M. bovirhinis and M. arginini (Fig. 2). These were confirmed as A. axanthum via 16S rRNA sequencing. Cohen’s Kappa coefficients showed good agreement between the universal PCR and species-specific PCRs and fair agreement between culture and both PCR tests (Table 2).

DISCUSSION

The objective of this study was to develop an accurate, rapid, and reliable method for milk screening of Mycoplasma and Acholeplasma species and investigate the relative merits of microbiological and molecular detection of mollicutes in bovine milk.

<table>
<thead>
<tr>
<th>Test</th>
<th>Positive</th>
<th>Negative</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional bacteriological culture method</td>
<td>192</td>
<td>176</td>
<td>52%</td>
</tr>
<tr>
<td>Universal PCR</td>
<td>269</td>
<td>99</td>
<td>73%</td>
</tr>
<tr>
<td>Species-specific PCR</td>
<td>256</td>
<td>112</td>
<td>70%</td>
</tr>
</tbody>
</table>

Table 1. Count of samples positive for detected mollicutes (Mycoplasma + Acholeplasma) species using conventional bacteriological culture method, universal PCR and species-specific PCR.
The studied farm had a history of treatment failure of mastitis with high somatic cell counts (~300,000 cells/mL at bulk tank level). Mycoplasma mastitis has a wide range of transmission methods through milking machines and other fomites [28,29]. Another important reason for the relatively high prevalence of mastitis causing *Mycoplasma* is due to intermittent shedding of the infection from the chronic mastitic cattle [30]. It is understood that *Mycoplasma* species have the ability to form multiple micro-abscesses within the infected mammary gland leading to chronic mastitis [31]. Results of the current study can be the cornerstone for raising awareness of the consequence of mollicutes-induced mastitis for the dairy industry. The association of these mollicutes and mastitis in addition to their pathogenic significance have previously studied [9]. The study concluded that the co-infection with *Mycoplasma* and *Acholeplasma* species has similar effects on milk composition to other major mastitis pathogens [9]. Therefore, the developed universal PCR in this study is useful for milk mollicutes screening. Further research in affected herds is required to establish the current prevalence of *Mycoplasma* mastitis in Australian dairy herds. Our study found that sensitivity of mollicutes detection using the novel universal 16S rRNA amplification was significantly higher than detection using the culture-based method. Naturally, 16S rRNA demonstrates high copy numbers and low sequence diversity which can enhance sensitivity of PCR based tests [32,33]. Results of our study show that one third of samples returned negative *Mycoplasma* results for culture and positive for both PCR methods (Fig. 1). This difference can be explained by the fastidious nature of *Mycoplasma* species, as failure to culture may occur due to lack of a cell wall [21], or due to involvement of multiple *Mycoplasma* species in a single case of mastitis that may have affected the growth requirements of each individual *Mycoplasma* colony. However, approximately 7% of positive samples were identified by culture, but not by PCR methods. This may be attributed to failure of DNA amplification due to existing inhibitors in milk samples or

<table>
<thead>
<tr>
<th>Tests</th>
<th>Concordant</th>
<th>Discordant</th>
<th>Concordant (%)</th>
<th>Cohen’s Kappa (95% CE)</th>
<th>Concordance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional bacteriological method versus Universal PCR</td>
<td>225</td>
<td>143</td>
<td>61%</td>
<td>0.298±0.049</td>
<td>Fair</td>
</tr>
<tr>
<td>Conventional bacteriological method versus Species-specific PCR</td>
<td>212</td>
<td>156</td>
<td>58%</td>
<td>0.213±0.048</td>
<td>Fair</td>
</tr>
<tr>
<td>Universal PCR versus Species-specific PCR</td>
<td>313</td>
<td>55</td>
<td>85%</td>
<td>0.747±0.031</td>
<td>Good</td>
</tr>
</tbody>
</table>

Fig 1. Percentage of positive/negative samples detected by species-specific PCR, universal PCR and culture for each species from bovine milk samples

Fig 2. Venn diagram of the positive and negative samples of the three detection methods from 368 bovine milk samples from a single farm in South Australia
due to failure of the developed universal 16S rRNA PCR to detect some of the species. Although culture-based methods is still considered as a gold standard in the detection of Mycoplasma infection [34], the specificity of this test particularly for various genera and species of mollicutes is challenging. Morphologically, detected colonies, which grew on the specific Mycoplasma media, were characterised by the typical fried egg appearance. However, discrimination between different mollicutes genus and species using culture alone was not possible, i.e. morphology and sizes of all detected colonies appeared to be similar for most of the identified species. Indistinguishable Mycoplasma and Acholeplasma colonies have also been observed previously [7]. Hence, these authors developed biochemical and molecular differentiation techniques [7]. In this study, we have confirmed the different species using PCR/sequencing tests but not using the biochemical properties.

In conclusion, the newly developed universal PCR of 16S rRNA by this study showed significant sensitivity to detect various Mycoplasma and Acholeplasma at genus-level in milk. Direct extraction of DNA from milk for detection of Mycoplasma can save time and money. Consequently, implementation of our methodology may be a cornerstone of in milk. Direct extraction of DNA from milk for detection and laboratory staff. Various rRNA by this study showed significant sensitivity to detect but not using the biochemical properties.

REFERENCES

Comparison of Culture and PCR for...

Clinical Veterinary Microbiology, Elsevier Health Sciences, 2013.

