Drone Semen Cryopreservation with Protein Supplemented TL-Hepes Based Extender [1]

Selim ALÇAY 1,a Selvinar ÇAKMAK 2 Ibrahim ÇAKMAK 2 Emine MÜLKPINAR 1,b Mehmed Berk TOKER 1,c Burcu ÜSTÜNER 1 Hasan ŞEN 2 Zekariya NUR 1,d

[1] This research had been funded by The Scientific and Technological Research Council of Turkey (TUBITAK) (Project number: 2050586)

1 Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Uludag University, TR-16059 Bursa - TURKEY
2 Beekeeping Development-Application and Research Center, Uludag University, TR-16059 Bursa - TURKEY
a ORCID: 0000-0002-2472-8157; b ORCID: 0000-0003-0251-987X; c ORCID: 0000-0002-7678-3289; d ORCID: 0000-0002-1438-221X

Abstract

The aim of the current study was to determine the optimum concentration of bovine serum albumin for post-thawing quality of drone sperm and this is the first study to evaluate the effect of BSA supplemented TL-Hepes based extenders for drone semen cryopreservation. Sexually mature drones were used for semen collection. Pooled semen was diluted with TL-Hepes based extender supplemented with different concentrations of BSA (1 mg/mL, 3 mg/mL, and 5 mg/mL) or without BSA (control), at a final concentration of 100x10^6 spermatozoon/mL. Motility, plasma membrane functional integrity (HOST), and defected acrosome (PSA-FITC) were evaluated in the study. At post thaw, the highest sperm motility rates were obtained in the BSA5 group (P<0.05). Functional integrity of sperm membrane was better preserved in the BSA3 and BSA5 groups compared to the other groups. The acrosomal integrity rates were higher in BSA5 group than in control group (P<0.05). The study shows that bovine semen albumin supplemented TL-Hepes based extenders have beneficial effect on drone semen parameters at post-thaw. The results of the study demonstrated a notable advantage of using 5 mg/mL of BSA in TL-Hepes based extender.

Keywords: Drone spermatozoa, Bovine serum albumin, Cryopreservation

INTRODUCTION

Cryopreservation is the pillar of the reproductive bio-technology [1]. This reversible process brings sperm metabolism to a standstill, in this way the genetic materials are successfully storaged for a long time [2].

Article Code: KVF D-2018-21311 Received: 06.11.2018 Accepted: 07.02.2019 Published Online: 07.02.2019
cryopreservation is a reversible operation, there are some harmful effects (cold shock, ice crystallization, lipid peroxidation etc.) on spermatozoa \cite{2,3}. These adverse effects may cause irreversible decreases on motility, viability and fertilization ability of spermatozoa \cite{4,5}. Therefore, the achievement of sperm cryopreservation depends on minimizing the adverse effects and maintaining the post-thaw semen quality \cite{1,5}.

Freezing of drone semen will improve preservation of the genetic diversity in the honey bee in different regions. For this purpose, genetic diversity of honey bee colony genetic diversity may be explored for the disease resistances \cite{6-10}. Drone semen cryopreservation has been accomplished in recent years. However, the freezing success of drone semen has not reached the desired level nowadays \cite{11,12}.

Bovine serum albumin (BSA) has a multifunctional effect on spermatozoa with its macromolecular structure and antioxidant capacity. Therefore, BSA increases the post-thaw sperm motility and protects the plasma membrane against cold shock \cite{13}. In addition, BSA increases the possibility of sperm-zona pellucida interactions and fertility results. For these reasons, various extenders supplemented with BSA are being used for cryopreservation or liquid storage of bull \cite{14}, ram \cite{15}, goat \cite{16}, stallion \cite{17}, buffalo \cite{18} and rabbit semen \cite{19}. However, the effect of BSA supplemented TL-Hepes based extender on drone semen cryopreservation has not been examined until now.

The drone semen cryopreservation contributes to the selection and conservation of gene lines in superior genetic characteristics \cite{8,9}. For this purpose, freezing and storage of drone semen which has superior genetic characteristics, allows preservation and widespread of the specified characteristics. The study was conducted to compare the various concentrations of BSA supplemented extenders to freeze of drone spermatozoa.

MATERIAL and METHODS

The chemicals were obtained from Sigma (St. Louis, MO, USA) and Merck (Darmstadt, Germany) in the study.

Experimental Design

The study was designed to investigate the efficacy of BSA supplementation to the extender in drone semen cryopreservation. Therefore, different concentrations of BSA (0 mg/mL, 1 mg/mL, 3 mg/mL or 5 mg/mL) supplemented TL-Hepes based extender was used for post-thaw drone semen quality.

Semen Extender Preparation

Hepes based extenders contained 114 mmol NaCl, 3.2 mmol KCl, 2.0 mmol CaCl\(_2\)2H\(_2\)O, 0.5 mmol MgCl\(_2\)6H\(_2\)O, 25.0 mmol NaHCO\(_3\), 0.40 mmol NaH\(_2\)PO\(_4\)·H\(_2\)O, 10 mmol NaLactate (60% syrup), 200 µL Catalase, 10% DMSO, 4 g/L penicillin G, 3 g/L dihydrostreptomycin in distilled water. BSA added to each group of extenders according to experimental design.

Semen Collection and Dilution

Strong and healthy colonies were used to produce honey bee drones that were collected from 5 colonies. Sexually mature drones (15 days or more) were used for sperm collection. Ejaculation was triggered by exerting pressure on the thorax and then gently squeezing the abdomen \cite{12}. Drone semen was taken up into the Schley syringe under a stereo microscope. The collected semen volume per drone was approximately 1 µL in the experiment. The drone semen was pooled (five times) in order to eliminate individual differences. The average volume of each pooled semen was 100 µL.

Each pooled semen were divided into five equal aliquots and diluted separately for a final concentration of approximately 100x10\(^{6}\) (spermatozoa/mL) with control or BSA supplemented TL-Hepes based extenders. Diluted samples were cooled to 5°C in an h. After cooling, the sperm samples were equilibrated for further 120 min at 5°C.

Semen Freezing and Thawing

Equilibrated semen was placed into straws (0.25 mL) and frozen in liquid nitrogen vapor. The straws were stored in a liquid nitrogen tank. Three straws were used for post-thaw semen parameters in each group.

Semen Evaluation

Semen evaluation was carried out via thawing the straws in a water bath that has 37°C warmth. Sperm cells were assessed for motility, functional integrity of the cell membrane (hypooosmotic swelling test) and the integrity of the acrosomes with FITC conjugated Pisum sativum agglutinin. The same person conducted the processes and measurements along the research. Semen motility was determined using a phase-contrast microscope (Nikon Alphaphot YS, Japan) (400×) with a warm slide that heated to 37°C and the motility results were expressed in percent \cite{12}.

The hypoosmotic swelling test (HOST) was assessed based on coiled tails at drone semen. Semen (10 µL) was incubated with host solution (100 µL of 100 mOsm) at 37°C for 30 min. At least 200 sperm cells were evaluated and spermatozoa with coiled tail were recorded \cite{20}.

Acrosomal integrity was evaluated with using Fluorescein lectin staining assay (PSA-FITC). Briefly, spermatozoa (10 µL) were suspended in 100 mL phosphate buffered saline (PBS) and centrifuged at 100 RCF (g) for 5 min. The sperm pellet was resuspended in 100 mL PBS. Spermatozoa were smeared on glass microscope slides using another slides and fixed with acetone at 4°C for 15 min. Spermatozoa were stained with the solution of PSA-FITC in a dark chamber at
37°C for 1 h. At least 200 drone spermatozoa were assessed at per smear under a fluorescence microscope [21].

Statistical Analysis

The results were analyzed using SPSS (SPSS 23.0 for Windows; SPSS, Chicago, IL, USA) and presented as mean ± standard deviation. Shapiro Wilk test was used as normality test. Semen parameters were analyzed using one-way ANOVA followed by Tukey. Pearson correlation coefficient was used to evaluate the relationships among the values of motility, plasma membrane functional integrity and acrosomal integrity. P<0.05 were considered to be statistically significant.

RESULTS

Sperm motility, plasma membrane functional integrity and defected acrosome rate of pooled semen were 88.00±2.73%, 89.40±3.36% and 6.40±1.67%, respectively. The percentages of sperm motility, plasma membrane functional integrity and defected acrosome of post-thawed drone semen from BSA and control groups, were indicated in **Table 1**.

Motility of drone spermatozoon was progressively decreased through the process of freeze-thawing (P<0.001). The motility rates better preserved in the BSA groups than the control groups (P<0.05). The highest percentage of motility was obtained in BSA5 group at post-thaw (P<0.05).

Plasma membrane functional integrity (**Fig. 1**) rates were reduced after thawing procedure (P<0.001). BSA3 and BSA5 groups had better results than BSA1 and control groups in terms of the functional integrity of the cell membrane (P<0.05).

Sperm acrosome (**Fig. 2**) was negatively affected by the freeze-thaw process (P<0.001). The percentage of defected acrosome in BSA5 group was lower than control group (P<0.05). Defected acrosome rates were not found significant among BSA groups (P>0.05).

The Pearson correlation test values are shown in **Table 2**. Motility was positively correlated with membrane integrity but negatively correlated with defected acrosome rates (P<0.01). In addition, there was a negative correlation between membrane integrity and defected acrosome rates (P<0.01).

DISCUSSION

Evidences suggest that, cryopreservation has a destructive effect on spermatozoon because of temperature change, cold shock and ice crystallization. These adverse effects provoke to decrease of motility, acrosomal integrity, and

<table>
<thead>
<tr>
<th>Group</th>
<th>Motility (%)</th>
<th>HOST (%)</th>
<th>Defected Acrosome (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>39.33±3.71a</td>
<td>59.20±3.58a</td>
<td>24.20±3.82a</td>
</tr>
<tr>
<td>BSA1</td>
<td>43.66±4.41b</td>
<td>61.53±4.15a</td>
<td>21.34±2.79a</td>
</tr>
<tr>
<td>BSA3</td>
<td>50.00±4.62c</td>
<td>66.06±3.15b</td>
<td>21.17±2.97b</td>
</tr>
<tr>
<td>BSA5</td>
<td>54.33±3.71d</td>
<td>67.73±4.07b</td>
<td>18.80±3.44b</td>
</tr>
</tbody>
</table>

Data is presented in Mean± S.D.
ab Values with different superscripts in the same column are significantly different (P<0.05)

Fig 1. Membrane integrity (a) and damaged membrane (b) by HOS test
fertilizing ability of spermatozoa [5,21-23]. Various extenders were used to minimize the adverse effect of freeze thaw process [5,8,22-24]. In the current study, we compared the effect of exogenous addition of BSA in TL-Hepes based extender on drone semen quality at post thaw. This is the first study to evaluate the effect of BSA supplemented TL-Hepes based extenders for drone semen cryopreservation.

After artificial insemination of queen bees, only motile spermatozoa could arrive to the spermatheca over a 48 h period [24,25]. In the study, BSA5 group yielded higher motility rates than other groups at post thaw time point (P<0.05). The post-thaw motility values of drone semen cryopreserved with different extenders ranged between 25%-62% [8,11,12,24]. After thawing, the motility rate in BSA5 group has a common point with the findings of other studies. In the study; BSA supplementation prompted to clear increase on motility at post-thaw. In addition, increasing doses of BSA positively affected sperm motility.

Plasma membranes have an important role in spermatozoon metabolism [19]. Therefore, integrity of the plasma membrane is essential for capacitation, acrosome reaction and oocyte fusion of sperm [25]. However, plasma membrane could lose its selective permeability because of the cold shock [26]. The protection against cold shock is possible with increasing the fluidity of cell membrane [27]. The protective effect of BSA against cold shock is based on this expected impact. BSA attaches to the sperm membrane and then changes sperm membrane lipid composition and decreases to phospholipid concentration [28]. In our study, the HOST rates in BSA3 and BSA5 group were higher than in the other groups (P<0.05). The HOST values have common points for the results with the previous research [12].

Acrosomal integrity is related with sperm penetration and fusion to zona pellucida. Therefore, this is another important factor in the fertilization process. The other adverse effect of cryopreservation is the acrosomal damage [5,21,23]. Bovine serum albumine successfully protects the integrity of acrosome [15,19]. In the study, there was no statistical difference among BSA groups. Additionally, BSA5 group preserved acrosomal integrity better than control group. The statistical difference of acrosome integrity between the groups of control and BSA5 by evaluating with PSA-FITC staining assay will brighten the path of further studies for this area.

In the study, a positive correlation was obtained between the post thaw sperm motility and plasma membrane functional integrity rates (P<0.01). As this is an expected result; the motility partly depends on the transport of compounds across the cell membranes [23]. There are previous reports with similar findings [8]. In addition, motility negatively correlated with non-intact acrosome rates (P<0.01). These results showed the same understanding that pointed with the other reports [20].

The outcomes of the study indicated that BSA5 group preserved sperm motility better than other groups. Considering to all sperm parameters (motility, plasma

<table>
<thead>
<tr>
<th>Spermatological Parameters</th>
<th>HOST (%)</th>
<th>Defected Acrosome (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motility</td>
<td>0.797**</td>
<td>-0.801**</td>
</tr>
<tr>
<td>Host (%)</td>
<td>-0.762**</td>
<td></td>
</tr>
</tbody>
</table>

Significance of the correlation is at the P<0.01
membrane functional integrity and acrosomal integrity); BSAS group was the optimum for drone semen cryopreservation among studied doses. Beneficial effect of ASA supplementation looked promising to increase the utility of TL-Hepes based extender for drone spermatozoa. Further studies should take place to improve the effects of the ASA supplemented TL-Hepes based extender concerning with sperm fertility.

REFERENCES