Pharmacokinetic Studies of the Recombinant Bovine Interferon-alpha in Cattle

Hai-Yang YU 1 Yu ZHAO 2 Shu-Qi LI 2 Xiu-Le FU 2 Wei ZHOU 2
Bing-Bing XIA 2 Jason CHEN 1,3 Jun ZHAO 1,2,4,5 Ming-Li WANG 1,2,4,5

1 Department of Microbiology, Anhui Medical University, Hefei, Anhui Province, 230032, CHINA
2 Anhui JiuChuan Biotech Co., Ltd., Wuhu, Anhui Province, 241007, CHINA
3 Department of Pathology & Cell Biology, Columbia University, New York 10032, USA
4 Wuhu Overseas Students Pioneer Park, Wuhu, Anhui Province, 241000, CHINA
5 Wuhu Interferon Bio-products Industry Research Institute Co., Ltd., Wuhu, Anhui Province, 241000, CHINA

Abstract

In order to evaluate the pharmacokinetics of recombinant bovine interferon-alpha (rBoIFN-α) in cattle, which has potential for its antiviral and immunomodulatory activities, 12 animals of 6-month age were classified into 4 groups (n=3) to receive rBoIFN-α through IV, IM or SC routes at a dose of 5.0×10³ IU/kg. Serum rBoIFN-α titer was evaluated using cytopathic effect (CPE) inhibition bioassay. Then, the standard pharmacokinetic parameters were calculated using the DAS (Drug and statistics) software. The concentration-time profiles of serum rBoIFN-α following IM administration, SC administration and IV administration were characteristics of the 1-, 1-, and 2-compartment open models, respectively. After a single dose of IV administration, the drug rapidly dispersed and was rapidly eliminated from the body (T₁/₂α=0.15±0.02 h, T₁/₂=6.48±0.49 h). After IM and SC administrations, the drug is rapidly absorbed and slowly eliminated from the body (For IM administration, Tmax=6.12±0.32 h, T₁/₂=8.19±0.74 h) (For SC administration, Tmax=4.06±0.56 h, T₁/₂=7.29±0.55 h). The bioavailability of rBoIFN-α after IM administration is 53.74%, which is higher than the bioavailability of SC administration (27.96%). Therefore, the results showed that the drug administration effect can be preferably followed following a single dose IM injection using the rBoIFN-α aqueous preparation. We hope that this study will provide valuable information for the clinical application of rBoIFN-α as an potential antiviral agent.

Keywords: Recombinant bovine interferon-α, Cytopathic effect inhibition assay, Bioavailability, Pharmacokinetic study

How to Cite This Article

Siğirlarda Rekombinant Bovine İnterferon-alfa Üzerine Farmakokinetik Çalışmalar

Öz

Bu çalışma potansiyel antiviral ve bağışıklık düzeyleyici fonksiyonlarını sahip olan rekombinant bovine interferon-alpha (rBoIFN-α)’nın siğırlarda farmakokinetik özellikleri değerlendirilmek amacıyla yapılmıştır. Çalışmada 6 aylık 12 hayvan 4 gruba ayrılmış (n=3), hayvanlara IV, IM ve SC yollarla 5.0×10³ IU/kg dozda rBoIFN-α verilmiştir. Serum rBoIFN-α tıritesi, sitopatik etki inhibisyon biyotest kullanılarak değerlendirilmiştir. Sonrası, standart farmakokinetik parametreler DAS (Drug and statistics) yazılımı kullanılarak hesap edilmiştir. Intramusüler, SC ve IV yollarla rBoIFN-α verilmesi sonrası konsantrasyon-zaman profili sırasıyla 1- ve 2-kompartman açık model özelliklerini göstermektedir. Tek doz IV uygulama sonrası ilaç hızlı bir şekilde dağıldı ve hızla vaca intercept edildi (T₁/₂α=0.15±0.02 s, T₁/₂=6.48±0.49 s). İlaç IM ve SC uygulaması sonrasında hızla absorbe edildi ve yavaşça vaca intercept edildi (IM uygulama için Tmax=6.12±0.32 s, T₁/₂=8.19±0.74 s) (SC uygulama için Tmax=4.06±0.56 s, T₁/₂=7.29±0.55 s), rBoIFN-α’nın IM uygulama sonrası biyoyararlanımı %53.74 olup bu değer SC uygulamadaki değerden (%27.96) daha yüksek olarak tespit edildi. Elde edilen sonuçlar, ilaç uygulaması etkisinde üçüncü tek doz IM rBoIFN-α sivi hazırlayışını enjeksiyonu arasında elde edilme eğilimini göstermiştir. Bu çalışmamın, potansiyel bir antiviral ajan olarak rBoIFN-α’nın klinik uygulaması için değerli bilgiler sağlayacağını düşünülmektedir.

Anahtar sözcükler: Rekombinant Bovine interferon-α, Sitopatik etki inhibisyon testi, Biyoyararlanım, Farmakokinetik çalışma

İletişim (Correspondence)

+86-551-65119667 Fax: 86-551-65119667 (J. Zhao); +86-551-65123422. Fax: 86-551-65123422 (M.L. Wang)
510192280@qq.com (J. Zhao); microbi@ahmu.edu.cn (M.L. Wang)
INTRODUCTION

Interferon (IFN) belongs to the large-scale protein family with anti-viral, cell proliferation regulatory and immunoregulatory activities [1,2]. It was originally reported by Isaacs and Lindenmann in 1957, that the influenza virus infected chicken cells could produce a soluble factor, which was endowed with the resistance to homologous and heterologous viruses [3]. Currently, IFN is generally classified into three categories, including type I, type II and type III IFNs [4]. Among them, type I IFN includes IFN-α, IFN-β, IFN-ω, IFN-τ and IFN-κ that play important roles in suppressing virus replication and cell growth [5,6], exerting their biological effects through the growth of co-receptor IFNAR [7]. Type II IFN only consists of one member IFN-γ [8], which plays a key role in adaptive immune responses, and is crucial for activating macrophages and natural killer (NK) cells [9,10]. Type III IFN are constituted by IFN-λ and interleukin (IL)-28/29 [4,11,12]. Typically, type I IFN and Type III IFN have anti-viral activities [13]. Some effects of various IFNs may overlap, however, in comparison with other types of IFN, type I IFN has displayed the strongest anti-viral activity [14].

IFN-α, which belongs to type I IFN, has been used as one of the most effective therapeutic drug to prevent or treat specific viral diseases. For example, human IFN-α shows favorable prospect in treating hepatitis B, hepatitis C, and other diseases [15-17]. Porcine IFN-α has been gradually adopted to treat some viral infections, such as PRV [18], PRRSV [19] and CSFV [20]. Bovine IFN-α (BoIFN-α) has also been proved to have anti-viral effect on the infection of bovine viral diarrhea virus (BVDV) [21], Foot and Mouth Disease Virus (FMDV) [22]. Moreover, the recombinant bovine IFN-α (rBoIFN-α) has been generated in the yeast expression system through Molecular Biology technology [23]. This technique allows rBoIFN-α to move further toward practical application in preventing and controlling the viral diseases in bovine industry.

In order to elucidate the pharmacokinetic profiles of recombinant interferon-α, many studies have been performed in human or animals, such as the pharmacokinetic profile of Escherichia coli-derived human interferon type alpha in mice [24], Recombinant Human Interferon Alpha2b Formulations in healthy human volunteers [25], recombinant leukocyte A interferon in patients with disseminated cancer [26], recombinant interferon alpha-C in patients with metastatic renal cell carcinoma [27], recombinant human interferon-alpha I in African green monkeys [28], recombinant alpha A interferon in African green monkeys [29], human recombinant interferon (Re-IFN-alpha A) in cynomolgus monkeys [30], recombinant leukocyte A interferon in beagle dogs [31], recombinant human interferon-alpha 2C in rat and marmoset [32], recombinant feline interferon in cats [33], recombinant chicken interferon-α in broiler chickens [34]. However, till now, to the best of our knowledge, no information on the pharmacokinetic characteristics of rBoIFN-α has been reported in scientific literatures. Moreover, due to the natural aspect of species-specificity in IFN [35], the bovine viral diseases can only be treated with bovine IFN and cannot be treated with human IFN. Therefore, our study aims to investigate the pharmacokinetic characteristics of rBoIFN-α in cattles by calculating the serum rBoIFN-α bioactivities at different time points using cytopathic effect (CPE) inhibition bioassay. Our study is original and provides the detailed evaluation of the parameters of rBoIFN-α pharmacokinetics. We hope that this study will provide scientific contributions to the research on rBoIFN-α.

MATERIAL and METHODS

Animals and Materials: In this study, twenty four 6-month-old cattles were used, including 12 males and 12 females. All cattles were derived from the commercial cattle farm at the age of 5 months. All animals were fed ad libitum with commercial diet for a month in the Experimental Animal Research Center of Anhui Province (Hefei, Anhui, China). The animals weight from 186.5 kg to 226.2 kg (200±26.3 kg) and were randomly classified into 4 groups, with 6 animals per group.

The rBoIFN-α freeze-dried powder for animal injection was offered by Anhui Jiuchuan Biotech Co., Ltd (batch number: 20151024, Wuhu, Anhui, China), which was produced by Anhui Jiuchuan Biotech Co., Ltd (batch number: 20151024, Wuhu, Anhui, China). All cattles were derived from the commercial cattle farm at the age of 5 months. All animals were fed ad libitum with commercial diet for a month in the Experimental Animal Research Center of Anhui Province (Hefei, Anhui, China). The animals weight from 186.5 kg to 226.2 kg (200±26.3 kg) and were randomly classified into 4 groups, with 6 animals per group.

Sample Collection: Blood samples (5 mL) were collected by jugular venipuncture (using contra-lateral vein from that to which the IV dose was administered) at 0 (just prior to treatment), 0.25, 0.50, 1, 2, 3, 4, 6, 8, 12, 24 and 48 h following treatment administration [36]. Samples were collected using a 1-inch by 20-gauge sterile needle and were then deposited into blood tubes. The blood tubes were placed in an ice bath, and protected from light, allowing to clot. After that, they were centrifuged at approximately 3,000×g for 10 min within 2 h after blood coagulation, and the supernatant was transferred by pipette into duplicate plastic tubes. The obtained sera were stored at approximately -70°C prior to assay. The animal experimental protocol performed in this study was approved by the Institutional Ethics Committee of Anhui Medical University (approval number: LLSC20170364).

rBoIFN-α Analysis in Serum: The IFN titers in Madin-Darby bovine kidney (MDBK) cell line, which was infected by...
vesicular stomatitis virus (VSV), were determined through the cytopathic effect (CPE) inhibition bioassay. In brief, the MDBK cells were inoculated into the 96-well microtest plates at the density of 3×10^4 cells per well and incubated in DMEM containing 3% fetal calf serum (FCS) at 37°C and 5% CO₂ humid air for 12 h. The monolayers of MDBK cells were treated with 100 μL of 4-fold serial diluted rBoIFN-α liquid. After 24-h incubation, cells were attacked by VSV at the volume of 100TCID₅₀/well (50% tissue culture infection dose) and continued to be cultured until the appearance of 100% CPE in the virus-infected cells (virus control well without rBoIFN-α treatment). Prior to plaque counting, the culture was stained with crystal violet. One IFN unit was defined as the highest dilution of rBoIFN-α that inhibited 50% CPE in the case of 100% CPE was observed in the non-IFN treated wells. The rBoIFN titers (IU) was expressed as the reciprocal of the dilutions resulting in 50% cell lysis through the computation with Reed-Muench method [37].

A recombinant human IFN-α (rhIFN-α1, 3×10^6 IU/mL, Lot number 97/04) was provided by the China Food and Drug Inspection Institute (Beijing, China) and was used as a positive control for CPE inhibition bioassay. The precision of the IFN standard, expressed in % RSD, was 2.1%; and the accuracy of IFN standard, expressed in relative mean error (RME), was ≤9.35%. In the current work, both the precision and accuracy values met the requirements.

Data Processing and Statistical Analysis: The mean ± standard deviation (X±SD) was adopted to explore the results about the rBoIFN-α titers. The data of serum rBoIFN-α concentrations at all time points following IV, IM and SC administrative injections were computed through the curve fitting formula using the DAS (Drug and statistics) software (Version 2.0, Wenzhou Medical University, Wenzhou, Zhejiang, China) [38], along with the adoption of noncompartmental analysis. The standard pharmacokinetic parameters included plasma concentration-time related area under curve (AUC [IU/L×h]), clearance rate (CL [L/h]), maximal plasma concentration (Cₘₚₑₜ [×10⁴ IU/L]), elimination half-life (t½ [h]), time to reach peak concentration (tₘₚₑₜ [h]), and mean retention time (MRT [h]). These serum concentration data were uniformed with the animal’s body weight by a comparable analysis. The AUC values after subcutaneous administration was computed through the linear-up/log-down trapezoidal method. To calculate AUCₐ₋∞ and CL, a terminal rate was determined with the slope to 48 h. Moreover, non-paired tailed t test were adopted to compare the data of the anti-viral activity in sera collected from the group of rBoIFN-α-treated animals with the group of normal-saline-treated control animals in each day. The statistical significance level was set to P<0.05.

The formula for bioavailability calculation was according to the following equation:

Bioavailability = F = (AUCs.c. or i.m. × D i.v.)/(AUCi.v. × Ds.c. or i.m.) × 100%

RESULTS

The experimental cattles were given IV, IM or SC injections of rBoIFN-α at the dose of 5.0×10³ IU/kg, and the blood rBoIFN-α efficacy was determined through the antiviral activity in the VSV-infected MDBK cell lines.

Table 1 showed the pharmacokinetic results of rBoIFN-α in the tested animals. The pharmacokinetic features of intravenous injection of rBoIFN-α conformed to the two-compartment open model, which was associated with

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Intravenous Injection Group</th>
<th>Intramuscular Injection Group</th>
<th>Subcutaneous Injection Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tₚₑₙ (h)</td>
<td>6.12±0.32</td>
<td>4.06±0.56</td>
<td></td>
</tr>
<tr>
<td>Cₘₚₑₜ (IU/L)</td>
<td>2400.32±128.48</td>
<td>1205.42±104.32</td>
<td>975.36±84.49</td>
</tr>
<tr>
<td>AUC (0-t) (IU/L×h)</td>
<td>17717.2±1421.38</td>
<td>12377.3±983.32</td>
<td>8023.4±628.29</td>
</tr>
<tr>
<td>AUC (0-∞) (IU/L×h)</td>
<td>29443.2±1562.47</td>
<td>15815.1±1014.26</td>
<td>8232.1±643.36</td>
</tr>
<tr>
<td>CL (L/h)</td>
<td>33.98±1.76</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C₀ (IU/h)</td>
<td>3049.3±486.32</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MRT (h) Mean Residence Time</td>
<td>9.44±0.45 h</td>
<td>12.76±0.69</td>
<td>11.73±0.58</td>
</tr>
<tr>
<td>Tₚₑ₉ (h)</td>
<td>0.15±0.02</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tₚₑ₉ (h)</td>
<td>6.65±0.44</td>
<td>8.96±0.85</td>
<td>7.69±0.66</td>
</tr>
<tr>
<td>Tₚₑ₉ (h)</td>
<td>-</td>
<td>1.12±0.27</td>
<td>1.81±0.34</td>
</tr>
<tr>
<td>Tₑ₉ (h)</td>
<td>6.48±0.49</td>
<td>8.19±0.74</td>
<td>7.29±0.55</td>
</tr>
<tr>
<td>Bioavailability (F)</td>
<td>-</td>
<td>53.74%</td>
<td>27.96%</td>
</tr>
<tr>
<td>Vdss (L)</td>
<td>128.6±6.86</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>k10 (1/h)</td>
<td>5.33±0.76</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>k12 (1/h)</td>
<td>0.19±0.04</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>k21 (1/h)</td>
<td>0.14±0.02</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
first-order elimination. Besides, the elimination half-life ($T_{1/2}$) of intravenous injection was (6.48±0.49) h (Fig. 1).

The pharmacokinetic features of intramuscular injection and subcutaneous injection of rBoIFN-α conformed to the one compartment open model. Their T_{max} were (6.12±0.32) and (4.06±0.56) h, respectively, and their elimination half-life ($T_{1/2}$) were (8.19±0.74) and (7.29±0.55) h, respectively (Fig. 2 and Fig. 3). The bioavailability of rBoIFN-α from the group of intramuscular administration was 53.74%.

Gender differences among all animal pharmacokinetic parameters were not statistically significant at any dosing level (data not shown). Moreover, no possible safety issues were observed at any dosing level during or after rBoIFN-α treatment in this study.

DISCUSSION

So far, the clinical application of interferon (IFN) is hindered due to the incomplete knowledge about its mechanisms of action. Nevertheless, some supportive evidence indicates that, the route of administration, namely, the pharmacokinetic behavior of drugs, is a significant factor affecting the efficacy of treatment. The pharmacokinetic characteristics of human IFN have been fully described. Its blood concentration will be rapidly decreased soon after IV administration, and the distribution volume is close to 20-60% of body weight. Animal study suggests that, the catabolism type of IFN belong to the category of the natural processing of proteins. The Clearance value of the entire IFN family varies from one to another (range: 4.8-206 L/h), which may reflect the natural digestion and the regeneration of proteins. The terminal elimination half life of IFN-α is 4-16 h. In comparison, IM and SC administration would render prolonged but really good absorption of IFN-α, which was more than 70% [39].

With regard to bovine interferon, Gillespie et al. [40] and...
Gillespie et al. [41] first reported the antiviral effects of *E. coli*-derived bovine recombinant interferon-α against bovine diarrhea virus and its application levels in the blood serum of dairy calves in 1986. rBoIFN-α has also been suggested to have a prophylactic effectiveness in controlling bovine respiratory disease. The administration of rBoIFN-α into growing calves resulted in reduced mortality and incidence of respiratory diseases. Specifically, rBoIFN-α-treated calves affected by respiratory disease showed less severe clinical symptoms, shortening of sick days and less recurrence of respiratory disease [42]. Because the research report on the pharmacokinetic assessment of rBoIFN-α is unavailable, therefore, we performed this study to investigate the pharmacokinetic characteristics of rBoIFN-α following a single injection of IV or SC or IM administrations.

Following IV administration, serum concentrations of rBoIFN-α rapid declined exponentially. rBoIFN-α serum concentration versus time data can be best fitted to a two-compartment open model, which was supported by disposition characteristics of recombinant IFN-α reported in human [25] and animals [28,30-33]. The elimination half-life \((t_{1/2β})\) (6.65±0.44 h) determined in the present study is longer than that reported in cats (about 0.51±0.08 h) [33], rats (2.8-6.3 h) [32], beagle dogs (about 4.5 h) [31], African green monkey (about 4.0 h) [28], but shorter than that determined in marmosets (Callitrix jacchus) (10-14 h) [32]. Clearance of rBoIFN-α observed in cattles (33.98±1.76 L/h) in the present study is faster than those reported in cats (about 0.51±0.08 h) [33], rats (1.34L/h) [32], beagle dogs (1.59±0.15L/h) [31], African green monkey (about 5.34 L/h) [28]. Besides, the clearance of the drug is also faster than that has been reported in marmosets (Callitrix jacchus) (12L/h) [32]. The drug is widely distributed in the body as determined by apparent volume of distribution \(V_{dss}\) (128.64±6.86 L) observed in the present study. This is in similar with that reported in marmosets [32], suggesting wider distribution of drug into the tissues of cattles.

Following IM administration, the pharmacokinetics of rBoIFN-α were well described by a classic one-compartment open model. After rBoIFN-α was injected IM, peak serum rBoIFN-α concentration (1205.42±104.32 IU/L) was achieved at 6.12±0.32 h (Tmax), which is lower than the peak recombinant IFN-α concentrations observed in African green monkey [28] and healthy human volunteers [25]. Elimination half-life following IM injection of the drug in the present study is longer than that reported in beagle dogs (about 4.7 h) [31], African green monkey (about 7.0 h) [28], healthy human volunteers (7.8±3.5 h) [25]. The absolute bioavailability (F) of rBoIFN-α following IM injection observed in the present study indicates that there was moderate good absorption of the drug from the IM injection site \((F=53.74\%)\). This value is similar to that reported in marmosets (ranged from 40-80%) [32] and slight higher than that reported in beagle dogs (42%) [31].

Following SC administration, the pharmacokinetic parameters of rBoIFN-α were slightly lower than those determined through the route of IM injection. Based on the observed serum drug concentration following IM administration of the drug in the present study, IM injection of rBoIFN-α may be used as a therapeutic route in cattles.

ELISA and cytopathic effect (CPE) inhibition bioassay are commonly used to quantitatively measure IFN concentration. Usually, ELISA is a rapid and simple way to quantitatively measure the protein concentration. Nevertheless, regarding to IFN-α, it can not determine the serum bioactivity of rBoIFN-α in due course. More significantly, Cytopathic effect (CPE) inhibition assay is a widely-used routine titer determination system for biological activity determination of human interferon. Furthermore, at the present time, no stable and reliable BoIFN-α ELISA kit approved by the competent authority is available. Consequently, CPE inhibition bioassay is employed in the current study to
quantitatively detect the bioactivity of rBoIFN-α in animal serum according to the descriptions of experimental protocols reported by several published articles [43-45].

The cytopathic effect (CPE) inhibition method employed in our study is a well-established and widely recognized method for analysis of interferon [46] and was referred to the 2015 edition of the pharmacopoeia of the People’s Republic of China. Most of the interferon bioassays rely on the same biological end-point: quantification of a viral cytopathic effect of host cells [47]. Host cells and the virus selected may differ depending on the interferon of interest. In general, biological fluid containing interferon is added to 10 plates seeded with monolayers of host cells and incubated; the medium from each well is aspirated, followed by a washing of the cells. The cells are then challenged with a cytopathic virus. The interferon titre is read as the reciprocal of the dilution in which 50% of the cell monolayer is protected, determined by visual inspection [47,48] or spectrophotometric detection [43,49]. The method’s principle was based on IFN protect cells against virus attacks ability to compute the titer of IFN, the determination results were expressed by the international units (IU).

In conclusion, rBoIFN-α was well tolerated in this study. It disseminated and disposed rapidly following a single dose of IV injection, while it was quickly adsorbed and slowly metabolized after a single-dose IM injection in cattle. Based on these data, rBoIFN-α has a potential for the treatment of viral infections without alteration of the dose and dose intervals in cattles. rBoIFN-α may be beneficial in veterinary practice, especially in the treatment of viral infections without alteration of the dose and dose intervals in cattles. rBoIFN-α may be beneficial and potentially applicable in cattle industry. However, in the future, more detailed studies concerning effective dose, timing of administration and characterization of the condition should be done to access the efficacy of rBoIFN-α in clinical practices.

AUTHOR DISCLOSURE STATEMENT
The authors declare that they have no competing interests in this study.

ACKNOWLEDGEMENTS
We would like to thank all staff in the Research and Development Department of Anhui Jiuchuan Biotech Co., Ltd for their technical assistance. This research was supported by the the programs from the National Key R&D Program of China (Grant No. 2017YFD0501000, 2017YFD0500906), Scientific research activities of post-doctoral researchers in Anhui (Grant No. 2017B194), Natural Science Fund of Anhui Province (Grant No. 1808085MC75), and 2017 WuHu Science and Technology Plan Project (Grant No. 2017yf01).

REFERENCES
23

Yu, Zhao, Li, Fu, Zhou, Xia, Chen, Zhao, Wang

