Brucella melitensis Isolated from Aborted Cow and Sheep Fetuses in Northwest of China

Huan ZHANG 1,#, Shengnan SONG 1,#, Benben WANG 3,#, Yali JIANG 3, Wenxing WU 1, Fei GUO 2, Yang LIU 1, Qian WANG 2, Junbo ZHANG 4, Hui ZHANG 1, Jinliang SHENG 1, Yuanzhi WANG 2, Chuangfu CHEN 1

These authors contributed equally to this work

1 School of Animal Science and Technology, Shihezi University, 832000-Shihezi City, Xinjiang, CHINA
2 School of Medicine, Shihezi University, 832000-Shihezi City, Xinjiang, CHINA
3 School of Life Science, Shihezi University, 832000-Shihezi City, Xinjiang, CHINA
4 College of Agroforestry Engineering and Planning, Tongren University, 554300-Tongren City, Guizhou, CHINA

Article Code: KVFD-2017-18881 Received: 14.10.2017 Accepted: 25.12.2017 Published Online: 25.12.2017

How to Cite This Article

Abstract
This study aimed to investigate the causes of abortion in cows that were mixed fed with sheep and/or goats, and the presence of B. melitensis infection in cows. PCR of 34 (28%) specimens out of 120 samples were identified as B. melitensis. The traditional bacteriological tests identified all of the isolates from sheep/cow aborted fetuses and milk as B. melitensis biovar 3. This is the first study to demonstrate B. melitensis as the main etiological agent for cows mixed fed with sheep and/or goats in XUAR, northwest of China. This may cause severe infection in the local population, and pose a potential public health risk, especially when eating or drinking the products of contaminated milk.

Keywords: Brucella melitensis, Cow, Abortion, China

INTRODUCTION
Brucellosis, a zoonosis of public health and economic importance worldwide, leads to great loss to domestic animals, principally in cows, sheep and goats. In some countries, particularly in southern Europe and Western Asia, where cattle are kept in close contact with sheep and goats, infection can also be caused by B. melitensis [1], but the symptom of abortion in cows is not as severe as in sheep or goats. Mixed farming is also adopted by smallholder farmers in China.

Six classical species of Brucella have been identified, including B. abortus, B. melitensis, B. suis, B. ovis, B. canis, and B. neotomae. Although B. abortus is considered as the main etiological agent of infected dairy cows, B. melitensis...
results in the greatest loss to domestic animal industry and public health [2,3]. Therefore, investigating the infection of \(\text{B. melitensis} \), as a nonspecific and heterogeneous agent in dairy herds, is crucial.

Xinjiang Uygur Autonomous Region (XUAR) in the northwest of China, is the largest province in China, and the livestock industry is the main source for its economic growth [4]. Very few studies have been conducted on prevalence and distribution of brucellosis in remote areas. The aim of this study was to investigate the etiological agents responsible for abortions in sheep or cows in endemic areas of brucellosis, and the presence of \(\text{B. melitensis} \) as a heterogeneous agent in dairy cows.

MATERIAL and METHODS

Bacterial Strains

Reference strains of \(\text{Brucella melitensis} \) 16M, \(\text{B. abortus} \) 2308 and \(\text{Toxoplasma gondii} \) as well as \(\text{Campylobacter fetus} \) spp, \(\text{Theileria sergenti} \) and \(\text{Tritrichomonas fetus} \) were provided by Anthropozoonosis laboratory in Shihezi University.

Sample Collection and DNA Extraction

The samples including aborted fetuses (\(n = 120 \)) and raw milk (\(n = 1 \)) were collected from Ili region (northwest of XUAR) in some sheep and cow mix feeding farms between April and May in 2016. Samples of spleen, liver and lung tissues and stomach contents were collected aseptically from sheep or cow aborted fetuses and raw milk from a cow with clinical signs of joint swelling and abortion history. Then the DNA extraction from tissue samples was performed using the TIANamp Genomic DNA Kit (TIANGEN BIOTECH CO., LTD) according to the manufacturer’s instructions. The nucleic acid extraction from raw milk was performed as previously described [5]. DNA concentrations were determined by measuring the \(A_{260} \), and the samples were stored at -20°C until further processing.

Synthetic Oligonucleotide Design

Oligonucleotide species-specific primers for \(\text{Brucella} \) genus [6], \(\text{Toxoplasma gondii} \) [7], \(\text{Campylobacter fetus} \) [8], \(\text{T. buffeli} \) [9], and \(\text{Tritrichomonas fetus} \) [10] are listed in Table 1.

PCR Amplification and Sequence Analysis

All samples were examined by PCR in a total volume of 30 μL, with 12.5 μL ddH₂O, 15 μL mix, 0.5 μL of each primer and 1.5 μL DNA template. The reaction was performed in a DNA thermal cycler (Perkin-Elmer) and 2 μL of the product was fractionated in a 1.5% or 2% agarose gel, stained with 0.5 mg/mL ethidium bromide solution, and visualized under UV light [11]. The positive amplification products were purified using the TIAN-gel Midi Purification Kit (TIANGEN, Beijing, China) and then subjected to sequencing. All of these data was analyzed using SPSS version 17.0 software.

Bacterial Isolation

\(\text{Brucella} \) was isolated from raw milk sample as previously described [12]. The tissue samples were homogenized before plating on the Brucella-selective agar. Then, 100 μL of the homogenized suspension was inoculated onto Brucella-selective agar plates. The suspension was spread with a loop producing a depot followed by single colonies. All cultures were incubated at 37°C with 5% CO₂ for five days. \(\text{Brucella} \) identification and species differentiation were accomplished using PCR protocols [13]. Furthermore,

![Table 1. PCR primers used for screening abortion-inducing pathogens in sheep](image-url)

- **Table 1. PCR primers used for screening abortion-inducing pathogens in sheep**

<table>
<thead>
<tr>
<th>Primer</th>
<th>Primer Sequences (5’-3’)</th>
<th>Size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Brucella-omp22})-primer -F</td>
<td>TGATGGGAGGGACCGACTA</td>
<td>526</td>
</tr>
<tr>
<td>(\text{Brucella-omp22})-primer -R</td>
<td>TGGTTCTTCAAGGTTGTTAGCG</td>
<td></td>
</tr>
<tr>
<td>(\text{B. abortus-IS711})-primer -F</td>
<td>GACGAACGGAATTTTTCCAATCCC</td>
<td>526</td>
</tr>
<tr>
<td>(\text{B. abortus-IS711})-primer -R</td>
<td>TGCCGATCCTAAGGCGCTCTAT</td>
<td></td>
</tr>
<tr>
<td>(\text{B. melitensis-IS711})-primer -F</td>
<td>AAATCGGCTCCTTGCGCTCGTGA</td>
<td>731</td>
</tr>
<tr>
<td>(\text{B. melitensis-IS711})-primer -R</td>
<td>TGCCGATCCTAAGGCGCTCTAT</td>
<td></td>
</tr>
<tr>
<td>(\text{C. fetus-sapB2})-prime r-F</td>
<td>GCAAATATAAATGTAAGCGGAG</td>
<td>435</td>
</tr>
<tr>
<td>(\text{C. fetus-sapB2})-prime r-R</td>
<td>TGACCAAGGCCACCCACTAT</td>
<td></td>
</tr>
<tr>
<td>(\text{T. buffeli-18S rRNA})-primer -F</td>
<td>AAATCGGCGAAGCTGCTCTAT</td>
<td>816</td>
</tr>
<tr>
<td>(\text{T. buffeli-18S rRNA})-primer -R</td>
<td>ACATCCCTTGGCAATGCT</td>
<td></td>
</tr>
<tr>
<td>(\text{T. fetus-TFITS})-primer -F</td>
<td>CTGCCCTTGAGCTGTTCTCG</td>
<td>208</td>
</tr>
<tr>
<td>(\text{T. fetus-TFITS})-primer -R</td>
<td>GCAATGTCATTCAAGATCG</td>
<td></td>
</tr>
<tr>
<td>(\text{Toxoplasma gondii-specific})-primer -F</td>
<td>CGCTGCAGCGGAGGAAGAGCAAAGTTG</td>
<td>529</td>
</tr>
<tr>
<td>(\text{Toxoplasma gondii-specific})-primer -R</td>
<td>CGTCGACAGCAACAGTCGATGGATT</td>
<td></td>
</tr>
</tbody>
</table>

*The pair of primers of \(\text{Brucella omp22} \) were used to screen \(\text{Brucella} \) spp. in the first round identification; \(\text{a} \) The pair of primers of \(\text{Brucella IS711} \) were used to differentiate the species of \(\text{Brucella} \)
The biotyping of the *Brucella* was based on conventional bacteriological and typing methods \[^{14}\]. This process was completed at the Center for Disease Prevention and Control (CDC) of China.

RESULTS

Molecular Detection

In the present study, molecularly positive products for *Brucella* genus were found but not for *T. gondii*, *C. fetus* spp, *T. sergenti* and *Tr. fetus*. Thirty-four (28.09%) samples, including 13 aborted sheep fetuses, 20 cow fetuses and one raw milk sample, were positive and further identified as *B. melitensis* by targeting *IS711* gene and only part of the positive samples were presented in Fig.1, the rest of the data was not shown.

The nucleotide sequences from our study have been deposited in the GeneBank database (accession number: KY312521). There were no differences in DNA sequences as compared to that of *B. melitensis* biovar 3 NI strain (accession number: CP002931) \[^{15}\].

Isolation of Brucella spp. from Organs

Bacteria were isolated from 34 samples and positively detected by *IS711* gene. The *Brucella* wild strains were isolated from 13 aborted sheep fetuses, 20 aborted cow fetuses and one raw milk sample. The detailed information is shown in Table 2. Furthermore, the culture isolates were identified as *B. melitensis* biovar 3 by conventional bacterial tests.

DISCUSSION

In XUAR, brucellosis has prevailed for decades \[^{16}\], where the seropositive rates for cows and sheep were 0.66% and 3.25%, respectively, during 2013-2014 \[^{17}\], and there are many pathogens could induce abortions in pregnant animals such as *Coxiella burnetii*, *Chlamydia abortus*, *Salmonella enterica Serovar Abortusovis*, *T. gondii*, and *Neospora caninum* \[^{18}\]. But, in the present study, *Brucella* was found to be the main pathogen responsible for livestock abortion and the rest of pathogens listed in Table 1 were not found in these aborted fetuses, the result suggests that the *Brucella* pose the biggest threat to local livestock and people due to the infected cow could spread the disease through milk or contaminated dairy products. Interestingly, all of the isolates were identified as *B. melitensis* biovar 3 by conventional bacteriological and typing methods \[^{14}\].

In Turkey, *B. melitensis* biovar 3 was first isolated from bovine aborted fetus \[^{1}\]. In China, It was isolated in raw milk from an aborted cow at a farm that had about 300 sheep and 40 cows in Inner Mongolia, north of China \[^{19}\]. The phenomenon of a host shift (i.e., the ability of a pathogen to colonize or infect a new host) is rare and appears in...

![Fig 1. PCR product of IS711 gene amplification Lane 1-10: sheep aborted fetuses; Lane 11: milk sample; Lane 12-21: cow aborted fetuses; Lane 22: *B. melitensis* 16M; Lane 23: *B. abortus* 2308; Lane 24: Negative control; Lane M: DM1000](image)

<table>
<thead>
<tr>
<th>Animal No</th>
<th>Organs</th>
<th>Host</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Spleen, Liver, Lung</td>
<td>Cow</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>Spleen, Liver, Lung</td>
<td>Sheep</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>Spleen, Liver, Stomach contents</td>
<td>Sheep</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Spleen, Liver, Milk</td>
<td>Cow</td>
<td>+</td>
</tr>
<tr>
<td>5-15</td>
<td>Spleen, Liver</td>
<td>Sheep</td>
<td>+</td>
</tr>
<tr>
<td>16-34</td>
<td>Spleen, Liver, Stomach contents</td>
<td>Cow</td>
<td>+</td>
</tr>
</tbody>
</table>
resource-poor communities in China due to the mixed feeding of cows with infected sheep and/or goats and ignoring brucellosis quarantine. This study described *B. melitensis* isolates from aborted cow fetuses and raw milk. The result suggests that *B. melitensis* infection in cows is an emerging livestock industry and public health issue in China. As demonstrated in this study, *B. melitensis* can be shed in raw milk from infected cows. In addition, infection might spread to farm workers, slaughterers, and veterinarians through handling infected animals or organs after slaughter [19]. *B. melitensis* infection in cows may become more common in the future, although no data is available on brucellosis patients due to *B. melitensis* infection transmitted by raw milk or its products in China.

The problem of cows infected by *B. melitensis* has potentially important implications for the control programs of brucellosis in China. The clinical symptoms of *B. melitensis* infection in cows is not apparent as compared to that of *B. abortus* infection [20]. The infected cow, as a reservoir, is susceptible to disseminating contaminated milk to the local or neighboring population. This study recommends: i) avoiding intermixed feeding model of cows, sheep or/and goats in the same yard in endemic areas, and ii) increasing regular quarantine of brucellosis and cows from the herd.

ACKNOWLEDGMENTS

This study was supported in part by grants from the National Key Research & Development plan (2017YFD0500304), National Natural Science Foundation of China (Grant Nos. U1503283, 81560338, 31572491, 31502067 and 31660705).

REFERENCES

