Comparative Analysis of Aflatoxin M1 in Marketed Butter by ELISA and HPLC

Abdurrahman AKSOY 1, Enes ATMACA 1, Fehmi YAZICI 2, Dilek GÜVENÇ 1, Osman GÜL 3, Muhammet DERVIŞOĞLU 2

1 Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ondokuz Mayis University, TR-55139 Samsun - TURKEY
2 Department of Food Engineering, Ondokuz Mayis University, TR-55139 Samsun - TURKEY
3 Program of Food Technology, Yeşilyurt Demir-Çelik Vocational School, Ondokuz Mayis University, TR-55139 Samsun - TURKEY

Abstract

The aim of this study was to examine the presence of aflatoxin M1 (AFM1) in butter samples marketed in the Black Sea Region of Turkey with two complementary analytical methods to improve accuracy. A total of 40 samples were analysed by enzyme-linked immunoabsorbent assay (ELISA) as the screening test and high performance liquid chromatography (HPLC) with fluorescence detection (FLD) after immunoaffinity column (IAC) clean-up as the confirmatory method. Results indicated that butter samples in the Black Sea region were of good quality with respect to AFM1, with no contamination detected. Furthermore, the accurate and sensitive IAC/HPLC-FLD method was confirmed as being appropriate for the detection of AFM1 in butter.

Keywords: Butter, Aflatoxin M1, Black Sea, Immunoaffinity column, HPLC, ELISA

INTRODUCTION

Aflatoxin M1 (AFM1) is a hydroxylated metabolite of aflatoxin B1 (AFB1) that can be found in the milk of dairy cattle fed with AFB1-contaminated feeds [1].

The stability of AFM1 determines its persistence in foodstuffs such as butter, yogurt, cheese, cream and ice cream [2]. However, this toxin is not inactivated by the thermal processing (pasteurization and ultra-high-temperature (UHT) treatment) used in the dairy industry [3]. As milk and milk products are important sources of nutrients, the contamination of these products with AFM1 is a potential risk for human health worldwide [4]. However, due to their low concentration in foods and feedstuff, analytical methods for detection and quantification of aflatoxins have to be specific, sensitive, and simple to carry out [5]. For the qualitative, quantitative and accurate determination of mycotoxin levels in food and feed products, the methods include thin-layer chromatography (TLC), high performance liquid chromatography (HPLC) with fluorescence (FLD) or diode array detector (DAD), gas chromatography coupled with mass spectrometry (GC-MS) or electron capture detection (GC-ECD), liquid
chromatography-tandem mass spectrometry (LC-MS/MS) enzyme-lynked immunosorbent assays (ELISAs) and a combination of immunoaffinity column (IAC) techniques [8]. In general, fast and easy-to-use ELISA based aflatoxin screening kits are commercially available for all major types of aflatoxins. However, cross reactivity with related mycotoxins is a drawback of this method [7]. Therefore, quantification is predominantly done with HPLC-FLD due to the excellent native fluorescence activity of aflatoxins. In addition, IAC clean-up has shown great potential to increase method specificity and sensitivity [8]. The objective of this study was to investigate the occurrence of AFM1 in butter in the Black Sea Region of Turkey by screening with ELISA, followed by the confirmatory method, HPLC-FLD.

MATERIAL and METHODS

Reagents and Materials

AFM1 analytical standard solution, phosphate-buffered saline (PBS) and immunoaffinity columns (IAC) were sourced from R-Biopharm Rhône Ltd. (Glasgow, Scotland). Acetonitrile and methanol were of HPLC grade (Sigma-Aldrich Co., USA). Whatman filter paper (No. 4) and Whatman 934-AH glass microfiber filter were from GE Healthcare (Buckinghamshire, UK).

Sampling

A total of 40 butter samples were purchased from supermarkets in the East, Middle and West Black Sea Regions of Turkey. They were produced in October-November, 2009 (first period) or May-June, 2010 (second period).

ELISA Procedures

The samples were prepared according to the application note, Ridascreen® Aflatoxin M1 (Art. No. R1121, R-Biopharm AG, Darmstadt, Germany) and analysed as described in the instructions of the AgraQuant® Aflatoxin M1 Sensitive kit (COKAQ7100, Romer Labs® Inc., U.S.A).

IAC/HPLC procedures

Aflatoksin M1 levels were determined in the butter samples by the method described in Sakuma et al.[9].

RESULTS

AFM1 was not detected in any of butter samples collected from the Black Sea region of Turkey. Mean recovery of AFM1 spiked into butter at 0.5 µg/kg was 84%. The limit of detection (LOD) was 0.023 ng/g and the limit of quantification (LOQ) was 0.077 ng/g. The HPLC standard calibration curve was linear over the range of concentrations of AFM1 injected and the R-squared (R²) value was 0.99. The method exhibited great accuracy and reproducibility for detecting AFM1 in butter.

The HPLC chromatogram of the AFM1 spiked sample of butter is shown in Fig. 1. There are no interferences in the section where AFM1 was eluted.

DISCUSSION

In Turkey, many surveys have examined AFM1 content in milk products but only a few have been done with butter, especially with HPLC-FLD. Aydemir Atasever et al.[10] investigated AFM1 levels with ELISA in 80 butter samples obtained from supermarkets between September 2007 and September 2009 in Erzurum, Turkey, and reported that 66 samples were contaminated with AFM1 ranging from 10 to 121 ng/kg and 13 samples exceeded the maximum legal limit. Tekinşen and Uçar [11] were scanned AFM1 by ELISA method using with IAC in 92 butter and 100 cream cheese samples obtained from retail outlets in five major cities of Turkey. They found 100% of the butter samples and 99% of the cream cheese samples were contaminated with AFM1, ranging from 10 to 7,000 ng/kg and from 0 to 4,100 ng/kg, respectively. In another study, 223 samples of dairy products (27 samples of butter) marketed in Ankara, Turkey during September 2002-September 2003, were analysed for AFM1, total aflatoxin and AFB1 with ELISA. The AFM1 contamination rate was 90.58% in dairy products, including 92.6% in butter [12]. Var and Kabak [4] investigated AFM1 by ELISA in 70 dairy products (10 butter samples) purchased in different supermarkets in Adana, Turkey. They detected AFM1 in three of 10 butter samples. In addition, Tosun and Ayyildiz [13] studied AFM1 levels with ELISA in organic milk and dairy products marketed in Turkey between February 2010 and February
2011. No AFM1 contamination was detected in organic butter samples.

During butter processing, the protein membrane around fat globules is broken down and the serum phase is separated. Due to the chemical structure of AFM1 and its affinity for casein, it adsorbs on this fraction of protein. Therefore, cream contains less AFM1 than milk and butter contains less AFM1 than cream [14]. As a result of the associated effects of these factors, less AFM1 occurs in the lipid phase (butter and cream) because it is concentrated in the serum phase and protein fraction. This data may be promote to our results. However, it is probable that good manufacturing practices and good storage prevented butter samples from getting mouldy.

Most of the current analytical techniques used for detection and quantification of aflatoxins involve sampling, extraction and clean-up, followed by an appropriate detection method, depending on the level of precision required of the result [7].

ELISA (test kits) are often used to screen and quantify mycotoxins as a rapid and practical method [15] but the drawbacks of the method are cross reactivity and matrix dependence, which often result in extreme over-estimation [16]. Therefore, confirmatory methods such as LC, GC, LC/MS, GC/MS are needed for a sensitivity and accuracy. In the present study, the HPLC-FLD method used with an immunoaffinity column was highly advantageous, including rapidity, when used specifically for determination of aflatoxins in dairy products. The HPLC-FLD method used with an immunoaffinity column was highly advantageous, including rapidity, when used specifically for determination of aflatoxin M1 contamination in raw bulk milk and the presence of aflatoxin B1 in corn supplied to dairy cattle in Japan. J Food Hyg Soc Jpn, 49, 352-355, 2008. DOI: 10.3358/shokueishi.49.352

REFERENCES