Distributions of CYP19, ERα and PGR Allele Frequencies between Fertile and Subfertile Holstein-Friesian Heifers

Abdulkadir KESKİN 1 2, Yasemin ÖNER 2, GÜlnaz YILMAZBAŞ-MECİTOĞLU 1, Barış GÜNER 1, Ebru KARAKAYA 1, Cengiz ELMACI 2, Ahmet GÜMEN 1

This work was financially supported by the Scientific Research Council of Uludag University (Project number: KUAP 2013/49)
1 Department of Gynecology and Obstetrics, Faculty of Veterinary Medicine, University of Uludag, TR-16059 Bursa - TURKEY
2 Department of Animal Science Biometry and Genetics, Faculty of Agriculture, University of Uludag, TR-16059 Bursa - TURKEY

INTRODUCTION

In the dairy industry, most economically important traits depend on reproduction, which determines the economic value of dairy herds [1-3]. Reproduction is influenced by many environmental and genetic components, as are most complex traits. In contrast, long generation intervals and the low heritability of reproductive traits can cause limited success in the selection of these traits [1]. Intensive selection has been applied for 50 years in the dairy industry, resulting in increased milk production while leading to an important decrease in reproduction [3,4]. High producing dairy cows generally require more service per conception, with prolonged calving intervals and
higher culling rates [2,3,5,8]. However, the fertility of heifers is greater than that of dairy cows due to the former’s lack of milk production. The rate of pregnancy per artificial insemination (P/AI) is approximately 60-75% in heifers inseminated following estrus detection. Thus, heifers are expected to become pregnant after a maximum two AIs, and heifers with ≥ 3 AIs can be considered subfertile [7-11].

Subfertile heifers, like repeat breeder cows, cause economic losses in dairy herds because of increased insemination costs, later first calving ages and higher culling rates [5]. Subfertile heifers with increased age of first calving are not suitable for herds [10] because they are culled quickly due to low milk production and some health problems (dystocia, metritis, replacement of abomasum etc.). Subfertility in heifers is a multifactorial condition [7], and there is no accurate method for diagnosing the cause in most individuals. Although there are many causative factors, hormonal imbalance, genetic factors and the uterine environment are important as etiological factors in subfertile heifers [7,8]. Genetic markers might be helpful for selecting more appropriate individuals to keep in breeding herds [12,13].

In addition, long generation intervals and the low heritability of reproductive traits have caused limited success of selection for reproductive traits, such as fertility. Molecular genetics tools, which allow for the detection of genes, have major effects on complex traits, such as reproductive performance, and they can be used as selection criteria for these types of traits for genetic improvement [14]. There have been limited efforts to determine the major genes influencing reproductive traits.

Researchers have focused on the gene-regulated hormones that play critical roles in reproduction, such as aromatase cytochrome P450 enzyme (CYP19), estrogen receptor α (ERα), and progesterone receptor (PGR), which have been investigated [15-17] to evaluate their polymorphisms as selection criteria for these types of traits for genetic improvement. However, there have been limited efforts to determine the major genes influencing reproductive traits [18]. It is also important to determine the genes and genotype frequencies of candidate gene for quantitative traits. Various studies have been performed to determine the gene and genotype frequencies affecting quantitative traits in cattle breeds reared in Turkey [12,13].

The aromatase cytochrome P450 enzyme catalyzes the conversion of androgens into estrogens and the biosynthesis of estrogen by aromatization [18]. This function of the hormone is important for controlling female reproduction. The aromatase cytochrome P450 enzyme is coded by the CYP19 gene, which is located on chromosome 10 in the bovine genome and has tissue-specific expression [16,18]. Placental expression of the CYP19 gene is regulated by P1.1 promoter, and an A→G mutation at this region has been detected [19]. Subsequently, due to the critical role of this gene region where the mutation occurs, various studies have been undertaken to investigate the associations between alleles at this locus and different economically important traits, including reproductive traits [20-23].

The other important candidate gene is estrogen receptor α (ERα). As with other nuclear receptors, estrogen receptors are transcription factors, and they regulate gene transcription [17]. Estrogens have also many functions in the critical process of the life cycle [24]. Due to their important roles, estrogen receptors and their genes are believed to be candidate markers for reproductive traits. There are two isoforms of estrogen receptor, called ERα and ERβ, which are coded by different genes located on chromosomes 9 and 10 of the bovine genome, respectively. Investigations of the functions of these two receptors have revealed that, while failure of ERα leads to infertility in both male and female mice, failure of ERβ has little effect on fertility [25]. All nuclear receptor genes, including ER, have a special structure at their 5'UTR region [26]. In addition to eight exons of ERα, there are additional exons encoding tissue-specific transcripts [26]. An A→G transition found at this region [25] has attracted attention for its possible effects on reproduction-related traits [26,27].

Progesterone plays a key role in the establishment and maintenance of pregnancy [15,28]. Because progesterone activity is regulated by progesterone receptor, the progesterone receptor gene (PGR) has been considered a good candidate for reproduction [27]. In the PGR gene, a G→C transversion and a T→C transition on introns 3 and 4 have been reported, respectively, and some associations have been indicated between these polymorphisms and reproductive parameters [27,28]. These polymorphisms were only recently reported, and there have been only a small number of studies performed on them to date.

Thus, the aim of this study was to evaluate and compare the frequency distributions of some mutations of the CYP19, ERα, and PGR genes with regard to fertility between fertile and subfertile Holstein-Friesian heifers.

MATERIAL and METHODS

Animals, Housing, and Sampling

This study was approved by the Ethics Committee of Uludag University (UÜHADYEK, Approval date: 04.06.2013; No: 2013-11/1). The study was performed at six different lactating dairy farms with an average of 400-750 milking cows, located in the Marmara region of the Turkey, and it was undertaken between January and December 2014. The first insemination age of the heifers was an average of 15 months old. Heifers were inseminated following estrus detection after spontaneous or PGF2α -induced (one or two doses of PGF2α apart from 14 days) estrus. Artificial
inseminations (AIs) were performed by farm veterinarians. The heifers were housed in a free-style barn, and they were fed total mixed rations, based on Natural Research Council recommendations, and had unlimited access to water. Heifers (n=106) were selected and included in the study according to their AI numbers, and they were assigned to one of the two groups. Heifers (n=51) that became pregnant after the first AI were used as a fertile heifers group. First and second pregnancy checks were performed at 30 and 60 days after AI in the fertile heifers. If embryonic loss was detected at the 60 d pregnancy check, the heifers were excluded from the study. Subfertile heifers with ≥ 3 AIs (n=55) formed the study group. Blood samples were obtained from the coccygeal vein for DNA isolation.

DNA Isolation and PCR Amplifications

Total DNA was extracted using a genomic DNA purification kit (K0512, Fermentas, Lithuania) according to the instruction manual. Spectrophotometric methods were used to determine DNA quality and quantity. The primers and restriction enzymes used for PCR amplifications are given in Table 1.

PCR amplifications were performed in reaction mixtures of 25 μL containing 12.5 μL of 2x PCR Master Mix (K0172, Fermentas), 0.5 μM of each primer, and 25-75 ng of genomic DNA. Amplification was performed using a Techgene Thermal Cycler (Techne, Cambridge, UK). Restriction enzyme cuttings were performed according to the manufacturer’s protocols. The restriction fragments were directly analyzed by electrophoresis in 2% and 2.5% agarose gels in 1× TBE buffer, stained with SafeView™ Classic (Applied Biological Materials Inc.) and visualized under UV light. Direct counting was performed to estimate the phenotype and allele frequencies of the genetic variants for all of the loci.

Statistical Analyses

Statistical analyses were conducted by using SAS. Data were evaluated using PROC GLM, PROC COR and PROC REG in SAS. The effects of heifer ages, numbers of AIs, farm factor, CYP19, ERα, and PGR genes were included to the statistical models. The differences in numbers of AIs and ages between the fertile and subfertile heifers were determined using the PROC GLM. The PROC REG and PROC COR procedure were performed to determine the effect of heifer ages, farm factor, CYP19, ERα, and PGR genes on numbers of AIs.

The chi-square test (χ^2) was used to determine whether the populations were in Hardy-Weinberg equilibrium. All of the calculations and the χ^2 analyses were performed using PopGene32 software. Differences in frequency distribution between the fertile and subfertile groups were tested by Fisher’s exact test using Minitab software, version 15.0, and SPSS software, version 17.0. To categorize comparisons after the chi-square test (χ^2), the two-proportion z-test was used.

RESULTS

The numbers of AIs and the ages of the heifers were greater (P<0.01) in the subfertile heifers (4.6±0.16 and 19.9±0.42) than in the normal heifers (1±0.19 and 15.5±0.43, respectively). Although high correlation (r = 63.0%; P<0.001) was detected between age and AI numbers, no correlation was found between other factors. According to regression analyses, only age was effect on AI numbers, but farm factor, CYP19, ERα, and PGR genes did not effect on AI numbers (R^2 = 43.2%; AI = - 0.20 + 0.271 Age - 0.0948 Farm + 0.071 CYP19 + 0.237 PGR -0.702 ERα).

When gene polymorphisms were evaluated, while two alleles and three genotypes were found at the investigated loci in the PGR and ERα genes, two alleles and two genotypes were detected at the investigated locus in the CYP19 gene. The GG genotype revealed two bands of 182 bp and 70 bp, while the AA genotype remained uncut. A homozygous individuals had only 242 bp uncut fragment, and G homozygous individuals had 182 bp and 60 bp fragments for the investigated locus in the ERα gene. Electrophorograms are presented in Fig. 1.

The A allele and AA genotype, the G allele and GG genotype, and the C allele and CT genotype were found to be predominant at the investigated loci in the CYP19, ERα and PGR genes, respectively. The frequencies of these predominant alleles were calculated for the whole population as 0.9623, 0.9198, and 0.6651 for investigated loci in the CYP19, ERα and PGR genes, respectively. The

<table>
<thead>
<tr>
<th>Loci</th>
<th>Primers (5’→3’)</th>
<th>Enzym</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGR</td>
<td>CCCATCCCTTACCTACATTCTCC</td>
<td>Eco321</td>
<td>Yang et al [28]</td>
</tr>
<tr>
<td></td>
<td>TTACCAAGCTGACCGAGGG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERα</td>
<td>TTTGTTAAGAGTGTTGAGATGGAGTGGACAGGGT</td>
<td>BglII</td>
<td>Szreder and Zwierzchowski [29]</td>
</tr>
<tr>
<td></td>
<td>TGTGACACAGGGTGGTTTTTCGTTGACACAGGGTGGTTTTTC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYP19</td>
<td>CTCCTGATGAGACAGGGCTC</td>
<td>Pvull</td>
<td>Vanselow et al [31]</td>
</tr>
<tr>
<td></td>
<td>ACAATGCTGGGTCTTGGACT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Distributions of CYP19, ERα and ...

According to the chi-square test (χ^2), the two groups investigated were in Hardy-Weinberg equilibrium. In addition, no differences were found in allele or genotype frequencies between fertile and subfertile heifers.

DISCUSSION

In cases of the detection of associations between markers and traits of interest, the marker can be used as a selection criterion for decreasing fertility problems. In this study, we investigated and compared polymorphisms in the genes regulating the main reproductive hormones between fertile and subfertile heifers.

Some researchers have been focused on determining the gene and genotype frequencies of candidate gene for subfertile animals [14,15]. However, there have been only limited efforts to determine the major genes influencing reproductive traits [12]. While in previous studies, polymorphisms in the CYP19 [16,18-21,33], ERα [20,21,25,28,34], and PGR [15,28,35] genes were evaluated in cows, the present study is the first on these gene polymorphisms in subfertile heifers.

When the results of the present study were compared with those of others, the allele and genotype frequencies were similar (Table 2) to the frequencies observed in European cattle breeds [15,21,22,28,35,36]. There has been only one study of ERα in which the A allele was predominant, in contrast with all the other studies. This contradiction might derive from the differences in nomenclature used in this study. There have been more studies performed on the relationships between CYP19 and ERα polymorphisms [20,21,25,28,34] and some reproductive and productive traits, when considering them with PGR [38]. However, the results obtained from these studies were not in concordance with each other. While in some previous studies significant relationships have been found between polymorphisms in the CYP19 and ERα genes and calving to conception intervals [20], calving difficulties [22,35] and milk

Table 2. Distributions of allele and genotypes of CYP19, ERα and PGR genes in fertile and subfertile groups

<table>
<thead>
<tr>
<th>Locus</th>
<th>Groups</th>
<th>n</th>
<th>Allele Frequencies</th>
<th>Genotype Frequencies*</th>
<th>χ^2(HWE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP19</td>
<td>Subfertile</td>
<td>55</td>
<td>A 0.955 B 0.045</td>
<td>AA 0.909 (50)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AB 0.091 (5)</td>
<td>0.098901**</td>
</tr>
<tr>
<td></td>
<td>Fertile</td>
<td>51</td>
<td>A 0.971 B 0.029</td>
<td>AA 0.940 (48)</td>
<td>0.030921**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AB 0.06 (3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BB -</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>χ^2(HWE) 0.098901**</td>
<td></td>
</tr>
<tr>
<td>ERα</td>
<td>Subfertile</td>
<td>55</td>
<td>A 0.064 G 0.936</td>
<td>AA 0.127 (7)</td>
<td>0.215877**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AG -</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GG 0.873 (48)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fertile</td>
<td>51</td>
<td>A 0.098 G 0.902</td>
<td>AA 0.019 (1)</td>
<td>0.832404**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AB 0.157 (8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BB 0.824 (42)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>χ^2(HWE) 0.215877**</td>
<td></td>
</tr>
<tr>
<td>PGR</td>
<td>Subfertile</td>
<td>55</td>
<td>C 0.636 T 0.364</td>
<td>CC 0.400 (22)</td>
<td>0.008285**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CT 0.473 (26)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TT 0.127 (7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fertile</td>
<td>51</td>
<td>C 0.696 T 0.304</td>
<td>CC 0.431 (22)</td>
<td>2.992969**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CT 0.529 (27)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TT 0.04 (2)</td>
<td></td>
</tr>
</tbody>
</table>

ns: non significant; * The numbers of animals carrying of each genotype shown in paranthesis
production, some of them did not find any associations with economically important traits, such as fertility [14] and milk production [36-38]. The gene and genotype frequency distributions for all of the loci did not differ between the fertile and subfertile groups. Although associations have been reported of the CYP19, ERα and PGR gene polymorphisms with some important traits in other studies [15,20,22,28,35,37], our findings did not support relationships between these mutations and pregnancy per AI. It was emphasized by previous studies that the allele frequency distributions in CYP19 and ERα were not favorable for association analysis, as we found. To ensure the veracity of any associations, larger populations must be studied [14,38].

There have been few studies of the PGR gene supporting strong associations between the transferable number of ovariess and PGR polymorphisms. These studies have provided markers that can be used in embryo transfer [23,34], despite finding no differences in PGR genotypes between the groups’ polymorphisms at this gene worth investigating further, because of both the limited numbers of studies of this gene and traits investigated. Association studies should be performed using a larger number of animals and more reproductive parameters.

In this study, we aimed to investigate the differences between fertile and subfertile heifers for polymorphisms in the CYP19, ERα and PGR genes. Despite the unavailable differences between groups, these polymorphisms should be investigated more intensively because they might be important to the improvement of reproductive traits with high heritability and repeatability, based on the critical roles that the genes play in these traits. Among these genes, the PGR polymorphism has been evaluated in subfertile heifers for the first time. Further investigations should be conducted with larger groups and more phenotypic data to exhibit more realistic results regarding possible associations.

REFERENCES

10. Mathes DC, Pollott GE, Johnson KA, Richardson SM, Cooke JS: Heifer fertility and carry over consequences for life time production in dairy and beef cattle. Animal, 8, 91-104, 2014. DOI: 10.1017/S1751731114000755
24. Eng WCS, Lee HS, Ferrara J, Willson TM, White JH: Probing the
Distributions of CYP19, ERα and ...

1999.00404-11.x

