Kinetic Modeling of Quality Aspects of Fermented Sausage (Sucuk) During Storage

Sami Gökhan ÖZKAL 1 Hüdayi ERCOŞKUN 2

1 Food Engineering Department, Engineering Faculty, Pamukkale University, TR-20070 Kinikli, Denizli - TURKEY
2 Food Engineering Department, Engineering Faculty, Çankırı Karatekin University, TR-18100 Uluyazı, Çankırı - TURKEY

Abstract

Quality characteristics of traditional fermented sausage (sucuk) including pH, free fatty acid (FFA), thiobarbituric acid reactive substances (TBARS), residual nitrite contents, colour values (L*, a*, b*, hue angle (Hue), browning index (BI), chroma and total colour difference (ΔE*)), total mesophilic aerobic bacteria (TMAB), lactic acid bacteria (LAB), total Enterobacteriacea (TE) and Staphylococcus and Micrococcus (SM) counts were investigated during storage period, and kinetic model estimation for the changes in these quality parameters were performed. After 9 days of fermentation period, the sucuk samples were stored for 90 days under controlled conditions. Analyses were done at the beginning, 30th, 60th and 90th days of the storage period. Zero, first and second order kinetic model equations represented successfully the changes in chemical and colour properties. A linear (first order) kinetic model equation demonstrated the kinetics of microbial changes well in the sucuk samples during storage period.

Keywords: Traditional fermented sausage, Sucuk, Storage, Kinetic model, Quality

INTRODUCTION

Fermented sausage production is a method to preserve meat since ancient times. Contrary, today the production of fermented sausages is carried out for their desired sensory attributes by the consumers. Sucuk, is a widely consumed traditional fermented sausage in Turkey and culturally neighboring countries in Asia, Europe and North Africa. There are numerous documents showing that ancient Turks made and consumed sausages thousands of years ago. It has been documented that sucuk was an easy to carry, easy to prepare and a palatable meat product in Manas saga, a thirteen hundred years old Kyrgyz legend [1]. Literally, sucuk is produced from a mixture of meat and fat. This mixture may include cattle, sheep and/or water buffalo meat, beef fat and sheep tail fat, salt, sugar, garlic and some spices and seasonings. After mixing it is filled into a casing and then subjected to fermentation at certain conditions resulting in a semi dry or dried meat product [2,3].

Fermentation is the main stage of the curing process of sausages, since at this phase the main physical, chemical
and microbiological changes start to occur. These transformations also continue in storage and are influenced by attributes of the raw material and the process conditions, which determine the sensory properties, shelf life and safety of the final product. These changes are mainly; changes in initial microflora, acidification, pH decrease, reduction of nitrates into nitrites than the nitric oxide, production of nitrosomyoglobin, solubilisation and jellification of myofibrillar and sarcoplasmic proteins, proteolytic, lipolytic and oxidative phenomena and dehydration [4-7]. Due to these continuous changes, the quality parameters of the last product show wide variations.

Kinetic modeling can be used to predict changes in physical, chemical or microbiological quality parameters of food products during processing and storage [8]. Numerous studies exist about kinetic modeling of quality changes in foods. Kinetic modeling of quality parameters of sucuk during fermentation was reported previously [9]. However, changes in quality parameters in sucuk like other food products continue during storage period after production processes. Due to these changes the product may become inconsumable. Kinetic modelling is a good way of demonstrating these changes in quality parameters during production (like fermentation) and storage for food products (like sucuk). Therefore, the aim of this study was to make a kinetic modeling of the changes in physical, chemical or microbiological quality parameters of the traditional fermented sausage “sucuk” during 90 days of storage period.

MATERIAL and METHODS

Three batches of the sucuk were produced under industrial conditions in a meat processing plant situated in Izmir, Turkey. Sucuk production was done according to method reported previously [9]. After fermentation the sucuk samples were vacuum packed in polyethylene bags and stored at 4°C during the storage period.

The study was carried out in three replicates. Percent moisture, salt, ash, fat, protein, contents of the samples were analyzed at the beginning of the storage. pH, free fatty acid, thiobarbituric acid reactive substances, residual nitrite content, instrumental colour and total mesophilic aerobic bacterial (TMAB), total Enterobacteriaceae (TE), Staphylococcus and Micrococcus (SM) and lactic acid bacteria (LAB) counts were analyzed at the beginning, 30th, 60th and 90th days of storage. Determination of the chemical, color and microbial parameters were carried out according to the methods reported previously [9].

Kinetic Modeling

Zero-order (Eqn. 1), first order (Eqn. 2) and second order (Eqn. 3) kinetic models were used to describe the chemical and physical changes during the storage of the sucuk samples [8]:

\[c = c_0 - kt \]
\[c = c_0 \exp(-kt) \]
\[\frac{1}{c} = \frac{1}{c_0} + kt \]

where, \(c \) is the quality parameter; \(c_0 \) is the value of this quality parameter at the beginning of the storage period, \(t \) is the storage time (day) and \(k \) is the rate constant (day\(^{-1}\)).

The linear (first order) kinetic model was used to demonstrate the changes in microbial quality parameters of the samples during the storage;

\[\frac{dN}{dt} = -k'N \]

after integration, it is,

\[\ln\left(\frac{N}{N_0} \right) = -k't \]

Base-10 logarithms of population sizes are used generally to present microbial changes [10,11]

\[\log\left(\frac{N}{N_0} \right) = -kt \]

where, \(N_0 \) and \(N \) are the initial number and number of survivors after a time \(t \) (day) of microorganisms and spores (cfu/g), respectively, \(k' \) is the rate constant (day\(^{-1}\)) and \(k = k'/\ln 10 \) (day\(^{-1}\)).

RESULTS

Percent moisture, salt, ash, fat and protein contents of the samples at the beginning of the storage were found as 35.29, 3.33, 4.57, 31.65 and 17.38%, respectively.

Estimated kinetic parameters of pH, FFA, TBARS and residual nitrite during storage are presented in Table 1. The positive (+) sign of the \(k \) shows a decrease while the negative (-) sign shows an increase in quality parameter during the storage. Comparison of the experimental values with the modeling results is given in Fig. 1. Only the models having highest \(R^2 \) values are presented in the graphs. During the 90 days of storage in refrigerator conditions the pH value of sucuk decreased from 5.05 to 4.76 (Fig. 1-A).

The FFA amount of the sucuk samples showed a significant increment during the storage. The FFA amount increased from 3.40 mg KOH/g fat to 5.15 mg KOH/g fat...
during 90 days of storage (Fig. 1-B). The increase in FFA amount during storage was well represented by all of the three kinetic models with negative k values (Table 1).

The TBARS value rose from 0.390 to 0.530 mg malonaldehyde/kg during the storage (Fig. 1-C). The increase in TBARS amount during storage was best demonstrated by zero order kinetic model with negative k value (Table 1).

The residual nitrite content showed a decrement in storage and its amount in sucuk was lower than the added nitrite amount during the preparation of sucuk dough (Fig. 1-D). The models tested were demonstrated the experimental data of the residual nitrite content with low

Table 1. Estimated model constants for pH, FFA, TBARS and residual nitrite

<table>
<thead>
<tr>
<th>Quality Parameter</th>
<th>Zero Order Model</th>
<th>First Order Model</th>
<th>Second Order Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c₀</td>
<td>k (day⁻¹)</td>
<td>R²</td>
</tr>
<tr>
<td>pH</td>
<td>4.9960</td>
<td>0.0030</td>
<td>0.8005</td>
</tr>
<tr>
<td>FFA (mg KOH/g fat)</td>
<td>3.3390</td>
<td>-0.0196</td>
<td>0.9929</td>
</tr>
<tr>
<td>TBARS (mg malonaldehyde/kg)</td>
<td>0.3985</td>
<td>-0.0016</td>
<td>0.9711</td>
</tr>
<tr>
<td>Residual Nitrite (ppm)</td>
<td>5.2430</td>
<td>0.0084</td>
<td>0.5228</td>
</tr>
</tbody>
</table>

FFA: Free Fatty Acid, TBARS: Thiobarbituric Acid Reactive Substances

Table 2. Estimated model constants for L*, a*, b*, Hue, BI, chroma and ΔE*

<table>
<thead>
<tr>
<th>Quality Parameter</th>
<th>Zero Order Model</th>
<th>First Order Model</th>
<th>Second Order Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c₀</td>
<td>k (day⁻¹)</td>
<td>R²</td>
</tr>
<tr>
<td>L*</td>
<td>45.447</td>
<td>0.0428</td>
<td>0.8829</td>
</tr>
<tr>
<td>a*</td>
<td>15.386</td>
<td>0.0231</td>
<td>0.9872</td>
</tr>
<tr>
<td>b*</td>
<td>12.008</td>
<td>0.0167</td>
<td>0.9583</td>
</tr>
<tr>
<td>Hue</td>
<td>0.6625</td>
<td>-6.0E-05</td>
<td>0.4607</td>
</tr>
<tr>
<td>BI</td>
<td>54.494</td>
<td>0.0319</td>
<td>0.9146</td>
</tr>
<tr>
<td>Chroma</td>
<td>19.517</td>
<td>0.0285</td>
<td>0.9787</td>
</tr>
<tr>
<td>ΔE*</td>
<td>7.1663</td>
<td>-0.0417</td>
<td>0.9409</td>
</tr>
</tbody>
</table>

Hue: Hue Angle, BI: Browning Index, ΔE*: Total Colour Difference
Kinetic Modeling of Quality ...

The estimated kinetic parameters of L^*, a^*, b^*, hue angle (Hue), browning index (BI), chroma and total colour difference (ΔE*) were estimated using kinetic models. Amongst them, the zero order model had the highest R^2 value of 0.5228 (Table 1).

Fig 2. Changes in L^* (A), a^* (B) and b^* (C) values during storage

Fig 3. Changes in Hue (A), BI (B), chroma (C) and ΔE* (D) values during storage

Hue: Hue Angle, BI: Browning Index, ΔE*: Total Colour Difference
The L*, a* and b* values of the sucuk decreased during the storage (Fig. 2). These changes in L*, a* and b* values during storage were best represented by a second order model (Table 2, Fig. 2). The hue angle of the sucuk increased very slightly, the BI and Chroma values decreased significantly and the ΔE* values increased significantly during storage (Fig. 3). The decrease in chroma value was represented by a second order model and changes in others were best demonstrated by zero order models (Table 2, Fig. 3).

The estimated parameters of the first order kinetic model for microbial counts of the sucuk are given in Table 3. Statistically the model had moderate level R² for LAB and SM and low level R² for TMAB. However, graphical analysis of the experimental and the model values show that the errors between them are very low and the model equation demonstrated the kinetics of microbial changes in the sucuks well (Table 2, Fig. 3).

The L* value decreases in sucuk samples during fermentation stage, due to the moisture loss or drying [20,21] results shows that this decrease continued during storage. The a* value indicating the redness of the sucuk decreased during storage (Fig. 2-B). The denaturation of myoglobin may cause this decrease in the redness value. These changes in the colour parameters during storage continued at slower rates than the changes in fermentation stage [9].

The TMAB and LAB counts decreased slightly until colour difference (ΔE*) during the storage are given in Table 2. The L*, a* and b* values of the sucuk decreased during the storage (Fig. 2). These changes in L*, a* and b* values during storage were best represented by a second order model (Table 2, Fig. 2). The hue angle of the sucuk increased very slightly, the BI and Chroma values decreased significantly and the ΔE* values increased significantly during storage (Fig. 3). The decrease in chroma value was represented by a second order model and changes in others were best demonstrated by zero order models (Table 2, Fig. 3).

The estimated parameters of the first order kinetic model for microbial counts of the sucuk are given in Table 3. Statistically the model had moderate level R² for LAB and SM and low level R² for TMAB. However, graphical analysis of the experimental and the model values show that the errors between them are very low and the model equation demonstrated the kinetics of microbial changes in the sucuks well (Table 2, Fig. 3).

The L* value decreases in sucuk samples during fermentation stage, due to the moisture loss or drying [20,21] results shows that this decrease continued during storage. The a* value indicating the redness of the sucuk decreased during storage (Fig. 2-B). The denaturation of myoglobin may cause this decrease in the redness value. These changes in the colour parameters during storage continued at slower rates than the changes in fermentation stage [9].

The TMAB and LAB counts decreased slightly until colour difference (ΔE*) during the storage are given in Table 2. The L*, a* and b* values of the sucuk decreased during the storage (Fig. 2). These changes in L*, a* and b* values during storage were best represented by a second order model (Table 2, Fig. 2). The hue angle of the sucuk increased very slightly, the BI and Chroma values decreased significantly and the ΔE* values increased significantly during storage (Fig. 3). The decrease in chroma value was represented by a second order model and changes in others were best demonstrated by zero order models (Table 2, Fig. 3).

The estimated parameters of the first order kinetic model for microbial counts of the sucuk are given in Table 3. Statistically the model had moderate level R² for LAB and SM and low level R² for TMAB. However, graphical analysis of the experimental and the model values show that the errors between them are very low and the model equation demonstrated the kinetics of microbial changes in the sucuks well (Table 2, Fig. 3).

The L* value decreases in sucuk samples during fermentation stage, due to the moisture loss or drying [20,21] results shows that this decrease continued during storage. The a* value indicating the redness of the sucuk decreased during storage (Fig. 2-B). The denaturation of myoglobin may cause this decrease in the redness value. These changes in the colour parameters during storage continued at slower rates than the changes in fermentation stage [9].

The TMAB and LAB counts decreased slightly until colour difference (ΔE*) during the storage are given in Table 2. The L*, a* and b* values of the sucuk decreased during the storage (Fig. 2). These changes in L*, a* and b* values during storage were best represented by a second order model (Table 2, Fig. 2). The hue angle of the sucuk increased very slightly, the BI and Chroma values decreased significantly and the ΔE* values increased significantly during storage (Fig. 3). The decrease in chroma value was represented by a second order model and changes in others were best demonstrated by zero order models (Table 2, Fig. 3).

The estimated parameters of the first order kinetic model for microbial counts of the sucuk are given in Table 3. Statistically the model had moderate level R² for LAB and SM and low level R² for TMAB. However, graphical analysis of the experimental and the model values show that the errors between them are very low and the model equation demonstrated the kinetics of microbial changes in the sucuks well (Table 2, Fig. 3).

The L* value decreases in sucuk samples during fermentation stage, due to the moisture loss or drying [20,21] results shows that this decrease continued during storage. The a* value indicating the redness of the sucuk decreased during storage (Fig. 2-B). The denaturation of myoglobin may cause this decrease in the redness value. These changes in the colour parameters during storage continued at slower rates than the changes in fermentation stage [9].

The TMAB and LAB counts decreased slightly until colour difference (ΔE*) during the storage are given in Table 2. The L*, a* and b* values of the sucuk decreased during the storage (Fig. 2). These changes in L*, a* and b* values during storage were best represented by a second order model (Table 2, Fig. 2). The hue angle of the sucuk increased very slightly, the BI and Chroma values decreased significantly and the ΔE* values increased significantly during storage (Fig. 3). The decrease in chroma value was represented by a second order model and changes in others were best demonstrated by zero order models (Table 2, Fig. 3).

The estimated parameters of the first order kinetic model for microbial counts of the sucuk are given in Table 3. Statistically the model had moderate level R² for LAB and SM and low level R² for TMAB. However, graphical analysis of the experimental and the model values show that the errors between them are very low and the model equation demonstrated the kinetics of microbial changes in the sucuks well (Table 2, Fig. 3).

The L* value decreases in sucuk samples during fermentation stage, due to the moisture loss or drying [20,21] results shows that this decrease continued during storage. The a* value indicating the redness of the sucuk decreased during storage (Fig. 2-B). The denaturation of myoglobin may cause this decrease in the redness value. These changes in the colour parameters during storage continued at slower rates than the changes in fermentation stage [9].

The TMAB and LAB counts decreased slightly until colour difference (ΔE*) during the storage are given in Table 2. The L*, a* and b* values of the sucuk decreased during the storage (Fig. 2). These changes in L*, a* and b* values during storage were best represented by a second order model (Table 2, Fig. 2). The hue angle of the sucuk increased very slightly, the BI and Chroma values decreased significantly and the ΔE* values increased significantly during storage (Fig. 3). The decrease in chroma value was represented by a second order model and changes in others were best demonstrated by zero order models (Table 2, Fig. 3).

The estimated parameters of the first order kinetic model for microbial counts of the sucuk are given in Table 3. Statistically the model had moderate level R² for LAB and SM and low level R² for TMAB. However, graphical analysis of the experimental and the model values show that the errors between them are very low and the model equation demonstrated the kinetics of microbial changes in the sucuks well (Table 2, Fig. 3).

The L* value decreases in sucuk samples during fermentation stage, due to the moisture loss or drying [20,21] results shows that this decrease continued during storage. The a* value indicating the redness of the sucuk decreased during storage (Fig. 2-B). The denaturation of myoglobin may cause this decrease in the redness value. These changes in the colour parameters during storage continued at slower rates than the changes in fermentation stage [9].
the end of storage (Fig. 4). This is a result of lactic acid production by LAB and decrease in pH [22,23].

The TE was uncounted during storage, therefore parameters of the models were unable to estimate (Table 3). However, a decrease in TE count during fermentation was reported previously [10], as a result of the decrease in pH, dehydration [23], and suppression of Enterobacteriacea by fermentation microflora [24]. This shows that this decrease continued during storage and the TE became uncountable. Due to the lack of data, the model equation for storage period was not given for the TE counts.

Sucuk is a fermented sausage and its quality characteristics changes during storage period. The changes in pH, FFA, TBARS, residual nitrite contents, L*, a*, b*, Hue angle, BI, chroma and ΔE* values, TMAB, LAB, TE and SM of the sucuk were determined during 90 days of storage after 9 days of fermentation period. Increases or decreases in these parameters were observed during fermentation. Kinetic modelling of these changes was performed. Zero, first and second order kinetic model equations demonstrated successfully the changes in chemical and colour parameters, and linear kinetic model equation demonstrated well the changes in microbial parameters.

ACKNOWLEDGEMENT

Manufacture of the sucuks were done PINAR Integrated Meat Processing Plant, Kemalpaşa, İzmir.

REFERENCES