Investigation of *Salmonella* spp. and *Listeria monocytogenes* in Seafood by Cultural Methods and PCR [1]

Serkan İKİZ 1, Emek DÜMEN 2, Beren BAŞARAN KAHRAMAN 1, Gülay Merve BAYRAKAL 2, Tolga KAHRAMAN 2, Sevgi ERGİN 3

[1] This work was supported by the Research Fund of the University of Istanbul. Project number: 48022
1 Department of Microbiology, Faculty of Veterinary Medicine, Istanbul University, TR-34320 Avcilar, Istanbul - TURKEY
2 Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Istanbul University, TR-34320 Avcilar, Istanbul - TURKEY
3 Department of Clinical Microbiology, Cerrahpaşa School of Medicine, Istanbul University, TR-34098 Fatih, Istanbul - TURKEY

Abstract

The present study was conducted to investigate the presence of *Salmonella* spp. and *Listeria monocytogenes* in 700 seafood (400 raw fish, 100 raw shrimps and 200 raw molluscs) collected from retailers. Isolations were performed by conventional culture methods. The isolates were also confirmed by PCR assays. *Salmonella* spp. and *L. monocytogenes* were detected in 9.9% and 3.86% fish and shellfish samples, respectively. The highest rates of *Salmonella* spp. (12.5%) were found in fish samples and *L. monocytogenes* (7.0%) were in shrimp samples. Therefore, it is essential to ensure improving the quality of production technology from fishing to retail outlet and developing the sanitation conditions of food contact surfaces and handling areas.

Keywords: Seafood, Fish, Shrimp, Mollusc, Pathogen

Deniz Ürünlerinde *Salmonella* spp. ve *Listeria monocytogenes* Varlığının Kültürel Metotlar ve PCR İle Araştırılması

Özet

Bu çalışma perakendecilerden toplanan 700 deniz ürününde (400 çiğ balık, 100 çiğ karides ve 200 çiğ molüsk (yumuşakça)) *Salmonella* spp. ve *L. monocytogenes* varlığının araştırılması amacıyla yapıldı. İzolasyonda konvansiyonel kültür metotları kullanıldı ve tüm izolatların PCR ile konfirmasyonları gerçekleştirildi. Bu çalışmada *Salmonella* spp. 12.5% oranında saptandı. Bu çalışmanın sonuçları, avlanması/yetiştirilmesinden perakende satış aşamasına kadar üretim teknolojisinin kalitesinin iyileştirilmesinin ve gida temas yüzeyleri ile ambalajlama alanlarında sanitasyon koşullarının geliştirilmesinin önemini göstermektedir.

Anahtar sözcükler: Deniz ürünleri, Balık, Karides, Molüsk, Patojen

INTRODUCTION

Seafood refers not only fish but also of shellfish which include crustacea (shrimp) and molluscs (mussel and calamari) [1]. Seafood is a rich source for a great number of nutritive and important components that have high amount of the vitamins such as A, D, E and B_{12}, the well balanced content of essential amino acids, the presence of antioxidants such as tocopherols, the exceptional concentrations of essential elements such as selenium and iodine, and the good digestibility of protein due to low amounts of connective tissue [2].

Seafood are highly perishable products. They may harbour pathogens which cause serious food safety problems for consumers. Some pathogens including *Salmonella* spp. and *L. monocytogenes* have been implicated in seafood-borne diseases. These pathogens are naturally...
present in sea water or can contaminate seafood during processing. The handling problems and poor hygiene conditions are the main reasons [1].

There have been some reports on the presence and prevalence of Salmonella spp. in Morocco [3], in Spain [4], in Vietnam [5], in India [6]; L. monocytogenes in Spain [7], in USA [8], in India [9], in Denmark [10], in Iran [11]. In Turkey the prevalence of these pathogens has not been extensively investigated.

Turkey has a favourable potential in terms of production and consumption of marine products due to surrounded by sea on three sides by the Black Sea in the north, the Mediterranean Sea in the south and the Aegean Sea in the west. In the north-west is also an important sea, the Sea of Marmara. The total shoreline is 8300 km long and half of Turkey’s population lives in coastal cities. Considering the consumption, Turkey (8.2 kg per capita per year) ranks in the 7th place among European countries [12].

The present study was carried out to determine the presence of Salmonella spp. and L. monocytogenes in seafood obtained from retail markets in Istanbul which has approximately an area of 5.343 km² and a population of 14.377.018 million people (18.66% of the country). Furthermore Istanbul gets seafood from all the surrounding seas of Turkey, and has a geographical importance due to its location and that represents a transit corridor between Europe and Asia.

MATERIAL and METHODS

Sample Collection

A total of 700 seafood (400 raw fish, 100 raw shrimps and 200 raw molluscs) were collected from retailers in Istanbul. All samples were kept in sterile jars and immediately transferred to the laboratory in cold boxes.

Bacteriological Analysis

Conventional culture-based study of samples was performed as recommended by FDA Bacteriological Analytical Manual for the isolation of Salmonella spp. Pre-enrichment was done by suspending 25 g of sample in 225 ml lactose broth (LB - Oxoid, USA) followed by incubation at 37°C for 24 h. One ml mixture was transferred to Rappaport-Vassiliadis (RV - Oxoid, USA) and Muller-Kauffmann Tetrathionate Broth Base (MKTTn - Oxoid, USA). MKTTn and RV broth was incubated for 24 h at 42°C. After incubation samples were streaked on Bismuth Sulfite Agar (BS - Oxoid, USA), Brilliant Green agar (BG - Oxoid, USA) and Xylose-Lysine Deoxycholate Agar (XLD - Oxoid, USA), incubated for 24 h at 37°C. The typical colonies were identified by biochemicals tests and confirmed with Salmonella antiserum (O and H-Vi polyvalent antiserum) [13].

The isolation of L. monocytogenes were performed according to International Standardization Organization (ISO) procedures. 25 gr/ml sample was inoculated into 225 ml Buffered Listeria Enrichment Broth Base (BLEB, Oxoid, USA) and the samples were incubated at 30°C for 4 h. At the end of the 4th h 25 mg/L natamycin was added to each sample and the incubation period was continued up to 48 h at 30°C. At the 24th h the incubation samples were inoculated onto Oxford Agar and Palcam Agar Plates (Oxoid, USA) and were again inoculated for 48 h at 35°C. After 48 h, all the samples (both from Oxford and Palcam Agars and from BLEB) were inoculated onto Chromogenic Listeria Agar (Oxoid, USA). Then, suspected colonies were passaged onto Tripctic Soy Agar with Yeast Extract (TSA, Oxoid, USA) for purification. Suspected isolates which matched to all identification parameters according to reference method (Gram staining, catalase activity, motility test, fermentation of maltose, rhamnose, mannitol, and xylose, hydrolization of esculin, reduction of nitrate) were evaluated as positive. CAMP test with Staphylococcus aureus and Henry illumination tests were also applied to all suspected samples [14,15].

PCR

All the culture positive samples were confirmed by PCR assays. The DNAs of all the isolates was extracted by Roche High Pure PCR Template Preparation Kit (Roche, France), according to the manufacturers instructions. The extracts were kept at –20°C to be used as target DNA for PCR assays.

Salmonella-specific invA primers (5’-GTGAAATTATCGCC ACGTTCGGGCAA-3’ and 5’-TCATCGCACCGTCAAAGGAACC-3’) were used for the detection of Salmonella in this study [6,10]. The PCR program consisted of an initial denaturation step at 95°C for 2 min, followed by 35 cycles of DNA denaturation at 95°C for 30 s, primer annealing at 64°C for 30 s, and primer extension at 72°C for 30 s. After the last cycle, a final extension step at 72°C for 5 min was added. PCR product were analysed by gel electrophoresis with 2% agarose (Sigma-Aldrich, USA) and visualised. Observed bands at 284 bp were evaluated as positive.

L. monocytogenes specific actA gene was reproduced by using specific designed primers (5’-GCTGATTTAAGAGA TAGAGGAACA-3’ and 5’-TTATGCGTTGATTGTGCTGTGC -3’) [17]. The PCR program consisted of an initial denaturation step at 94°C for 2 min, followed by 35 cycles of DNA denaturation at 94°C for 60 s, primer annealing at 50°C for 60s, and primer extension at 72°C for 60 s. PCR products were analysed by gel electrophoresis with 1.5% agarose (Sigma-Aldrich, USA) and visualised. Observed bands at 827 bp were evaluated as positive.

Each of PCR test, positive controls (Salmonella enterica serovar Typhimurium, ATCC 23564, field isolate of L. monocytogenes), and negative control (sterile dH2O) were used separately along with seafood samples.
RESULTS

Salmonella spp. and L. monocytogenes were detected in 9.9% and 3.86% fish and shellfish samples, respectively (Table 1). All the Salmonella spp. and L. monocytogenes were confirmed by PCR assay (Fig. 1).

<table>
<thead>
<tr>
<th>Products</th>
<th>Number of Samples</th>
<th>Number of Salmonella spp. Positive Samples</th>
<th>Number of L. monocytogenes Positive Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish</td>
<td>400</td>
<td>50 (12.5%)</td>
<td>10 (2.5%)</td>
</tr>
<tr>
<td>Shrimp</td>
<td>100</td>
<td>2 (2.0%)</td>
<td>7 (7.0%)</td>
</tr>
<tr>
<td>Mollusc</td>
<td>200</td>
<td>17 (8.5%)</td>
<td>7 (5.0%)</td>
</tr>
<tr>
<td>Total</td>
<td>700</td>
<td>69 (9.9%)</td>
<td>27 (3.86%)</td>
</tr>
</tbody>
</table>

Fig. 1. PCR result of a L. monocytogenes positive sample
Line 1 DNA marker (100 bp); Line 2-5 Negative samples; Line 6 Positive sample (827 bp); Line 7 Positive control; Line 8 Negative control

Table 1. Prevalence of Salmonella spp. and L. monocytogenes in various seafood

<table>
<thead>
<tr>
<th>Products</th>
<th>Number of Samples</th>
<th>Number of L. monocytogenes Positive Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish</td>
<td>50 (12.5%)</td>
<td></td>
</tr>
<tr>
<td>Shrimp</td>
<td>7 (7.0%)</td>
<td></td>
</tr>
<tr>
<td>Mollusc</td>
<td>10 (5.0%)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>27 (3.86%)</td>
<td></td>
</tr>
</tbody>
</table>

DISCUSSION

According to Turkish Food Codex \cite{18}, the presence of Salmonella spp. and L. monocytogenes in 25 g of fish and shellfish is not acceptable.

The present study demonstrated that Salmonella spp. was isolated from 12.5% of raw fish samples. Regarding the contamination rate, our results were slightly similar to the study obtained by Kusumaningrum et al. \cite{19} and Hatha & Lakshmanaperumalsamy \cite{20}. In another study, no Salmonella spp. was isolated \cite{21}. Contrary to this, the studies which had higher results (90.0%, 43.8% and 30.5%) than ours were reported by Jegadeeshkumar et al. \cite{22}, Budiati et al. \cite{23} and Kumar et al. \cite{24} respectively. The reason for high contamination rate should be due to the use of contaminated raw materials, detection methods and the geographical conditions.

The prevalence of Salmonella spp. in shrimp samples tested in this study was lower in comparison to those detected by Kumar et al. \cite{25} (29.0%), Kumar et al. \cite{26} (26.7%) and Hatha & Lakshmanaperumalsamy \cite{20} (9.15%). On the other hand, Koonse et al. \cite{27} reported the prevalence rate of Salmonella spp. was 1.6% in shrimp samples. Our findings (2.0%) showed similarity with the mentioned results. These differences may be originated from sampling procedures and the sanitation applications. Ahmed \cite{28} stated that the presence of Salmonella spp. is an indicator of adulteration in shrimp industry which is one of the most important commodities seen in global fishery trade.

In this study, Salmonella spp. was detected in 8.5% of molluscs samples. This result was in acceptance to the findings reported by Setti et al. \cite{29} and Simental & Martinez-Urtaza \cite{30}. According to the classification of the seafood, the highest risk category includes raw fish and molluscs especially mussels \cite{31}. In Spain, Martinez-Urtaza et al. \cite{32} demonstrated that 3.0% of samples were positive for Salmonella spp. The prevalence of Salmonella spp. was related with different hygiene applications and poor manufacturing processes.

In our study, L. monocytogenes was detected in 2.0% fish samples. Higher results were found by Jeyasekaran et al. \cite{33}, Farber \cite{29} and Ellner et al. \cite{34} at rates of 17.2%, 13.3% and 50.0% in fish samples, respectively. Similar results were detected by Gesche & Ferrer \cite{31}, Dhanashree et al. \cite{32} and Davies et al. \cite{35}. In contrast, Fuchs & Surendran \cite{36} and Cenet \cite{35} could not detected. Parihar et al. \cite{36} reported that L. monocytogenes is not usually found on fish captured from open waters and contamination may take place long before the fish raw material reaches retail trade or processing factories.

According to the results from this study, the prevalence of L. monocytogenes was determined as 7.0% in shrimp samples. Likewise, Hofer and Ribeiro \cite{37}, Berry et al. \cite{38} and Jeyasekaran et al. \cite{39} demonstrated that L. monocytogenes was isolated from 8.8%, 6.7% and 10.7% of shrimp, respectively. On the contrary, lower results were reported by some authors \cite{12,40}. Differences between the findings obtained from several studies can be related to the contaminations after process, preservation conditions and inadequately personal hygiene.

In the present study, of the analysed 200 molluscs
samples, 5% were positive for *L. monocytogenes*. In Spain 7.5% of mussels \[43\] and in Argentina 4.5% of mussels \[42\] were investigated *L. monocytogenes* contamination. In another study in Brazil, no *L. monocytogenes* was isolated \[43\].

In conclusion, the result of this study confirmed that fish and fish products may be contaminated with pathogens which can cause serious public health problems. In Turkey, seafood consumption has been increasing \[44\]. Therefore, it is essential to ensure improving the quality of production technology from fishing to retail outlet and developing the sanitation conditions of food contact surfaces and handling areas. Also, food safety training should be provided for all staff to increase the level of awareness and the sense of responsibility regarding food hygiene.

REFERENCES

34. Fuchs RS, Surendran PK: Incidence of *Listeria* in tropical fish and

