Serum IL-1β, IL-6, IL-10 and TNF-α Levels in Thyroidectomized Rats [1]

Sinan KANDIR 1  Ercan KESKİN 1

[1] This project was partially supported by The Scientific and Technological Research Council of Turkey (TUBITAK)/ARDEB 1002 Short Term R&D Funding Program (Project No:1150130)

INTRODUCTION

Cytokines are a heterogeneous group of polypeptides which have multifunctional act as modulating, triggering and regulating of inflammatory and immune responses. Most cytokines have autocrine and paracrine effects owing to multiple cellular sources. Interleukins are described as any of various compounds of low molecular weight (~17 to 60 kd) these are produced by lymphocytes, macrophages and monocytes and they act as regulate of the humoral and innate immune functions and inflammation cascades [1].

The firstly discovered interleukin was IL-1 which has extensive family consisted by 11 members. The major members of IL-1 family are IL-1α and IL-1β, these two proteins are binding to the same receptor complexes namely as IL-1 type I receptor (IL-1RI) and IL-1RII due to exert similar biological effects act as proinflammatory cytokine which has potentiating immune and inflammatory responses Multifunctional, pleiotropic cytokine IL-6 is regulated of immune and acute-phase responses, hemopoiesis and inflammation which is produced by innate immune cells (T helper 2; Th2), monocytes and macrophages, endothelial cells, fibroblasts, that promotes T-cell proliferation, B-cell differentiation and survival triggering by IL-1 and tumor necrosis factor alpha (TNF-α). When firstly described in late of the 80’s an anti-inflammatory cytokine IL-10 was known as cytokine synthesis inhibiting factor. Whilst the major source of this cytokine is macrophages, Th2 cells, monocytes and keratinocytes may also produce. Another pro-inflammatory cytokine tumor necrosis factor alpha (TNF-α) is in a relationship with the physiopathologies
of cancer, neurological, cardiovascular, autoimmune and metabolic disorders through activation of nuclear factor kappa B (NF-kB) pathway \[2,3\].

Thyroid hormones are affected nearly all metabolic processes by using different pathways. Hypothyroidism have described as absence or lacking of thyroid hormones which could cause of abnormalities on metabolic and immunological functions. Cytokines play pivotal role in autoimmune thyroid disorders namely as Graves’ disease or Hashimoto's thyroiditis \[4\]. Various models have been widely used as congenital hypothyroid animals due to thyroid gland dysgenesis or thyroid dyshormonogenesis, thyroid hormone receptor (TR) gene mutated animals, and thyroid hormone transport or metabolism modified animals for enhancing knowledge and clarify the thyroid hormone action \[5\]. In order to realize adult-onset hypothyroidism in rodents, thiourea based selenium analogue antithyroid agents have been used in such as propylthiouracil (PTU) or methimazole (MMI). Nevertheless, previously studies revealed that PTU and MMI have immunomodulatory effects \[6\].

Therefore, hypothyroidism was induced by thyroidectomy operation due to withdrawn adverse effects of antithyroid drugs on immune system function and it was aimed to determine the serum levels of IL-1, -6, -10 and TNF-α in adult-onset hypothyroidism.

MATERIAL and METHODS

Animals

Ten male Wistar rats (12 weeks age) obtained from Selcuk University Experimental Medicine Research and Application Center. Rats were kept in a room at a constant temperature 22±2°C with 50% relative humidity, 12 h light/dark cycle period and housed in polycarbonate cages with fed by standart rat chow and tap water ad libitum. All experimental procedure was approved by Selcuk University Experimental Medicine Research and Application Center Local Ethics Committee (Approval number: 2014/16).

Experimental Protocol

Rats were randomly divided into two groups as control (n=5) and thyroidectomized (Tx, n=5). Hypothyroidism was generated by surgical thyroidectomy in rats with anesthetized by xylazine HCl (10 mg/kg/BW) and ketamine HCl (50 mg/kg/BW). Briefly, using a stereomicroscope (Olympus Co., Tokyo, Japan) for better observation, the stenothyroid muscle was cut and the trachea was exposed. The parathyroid gland was found, dissected from the thyroid gland, and implanted into the surrounding neck muscle. The thyroid gland was completely excised. After surgery, carprofen (Rimadyl® Pfizer, 5 mg/kg) was injected over 3 days to alleviate pain. The control group received the pre- and post-surgery treatment. Four weeks after thyroidectomy operation blood samples were taken by cardiac puncture under deeply anesthetized with ketamine HCl and xylazine HCl collected into non-coagulant tubes and centrifuged (3,000 x g for 5 min) after that collected sera was stored -80°C until analysis.

Assessment of Thyroid Hormones and Cytokines

Serum concentrations of thyroid stimulation hormone (TSH) and free tri-iodothyronine (fT3) were determined by autoanayser (ADVIA Centaur XP Immunoassay System, Siemens, USA) and selected cytokines IL-1β (Cat. No. BMS630), IL-6 (Cat. No. BMS625) and IL-10 (Cat. No. BMS629) and TNF-α (Cat. No. BMS622) were determined by ELISA (Bio-tek Instruments, Inc.) using sandwich enzyme-linked immunosorbent method according to manufacturer's (Ebioscience) instructions.

Statistical Analysis

Statistical analysis was performed with the SPSS 19.0 package program for Windows (SPSS, Inc., Chicago, IL, USA). Data are expressed as mean ± standard error of the mean (SEM) Student’s t-test was used for determination among the groups. P<0.05 was considered for statistically significant.

RESULTS

As shown as Table 1, hypothyroidism was confirmed by elevated TSH and decreased fT3 levels (P<0.05) in thyroidectomized group.

According to obtained data IL-1β, IL-6 and IL-10 levels (Table 2) were slightly increased but these were not statistically significance except TNF-α level in thyroidectomized animals compared with control group (P<0.05).

| **Table 1. Thyroid hormone levels (mean±SEM, n=5)** |
|-----------|-----------|
| Group | TSH µIU/mL | fT3 ng/dL |
| Control | 1.73±0.29 b | 3.36±0.27 a |
| Tx | 19.54±1.61 a | 2.03±0.32 b |

\[a,b\] Different letters in the same column refers the differences between the groups (P<0.05)

DISCUSSION

Hypothyroidism could cause of reduction in serum pro-inflammatory cytokines IL-6 and TNF-α levels in mice \[7\], rats \[8\], which were induced by PTU, MMI and thyroidectomy. Also, Kızıltunc et al.\[9\] reported that IL-6 and TNF-α serum levels were decreased in humans who suffered owing to hypothyroidism. Contrarily to these data, PTU did not cause any alteration in circulating levels of TNF-α in human \[10\] nor in rats \[11\].
In this regard, we have investigated the serum levels of IL-1, -6, -10 and TNF-α in thyroidectomized rats. In the present study, serum TSH levels approximately ~11 fold higher (P<0.05) and fT3 levels decreased (P<0.05) in the thyroidectomized group compared with control. The obtained data shown that hypothyroidism have been well established after thyroidectomy operation.

IL-1 inhibits TSH-induced TPO gene expression directly, thus IL-1 as a local inhibitor of THs synthesis. Additionally, IL-6 can inhibits TSH-induced TPO mRNA transcription in a dose-dependent manner [1].

Pro-inflammatory or anti-inflammatory cytokines which produced by Th1 (IL-1β, TNF-α) and Th2 (IL-6, IL-10) cells have crucial role in protecting against the autoimmune thyroid disease [16,17]. Furthermore, now it is well known that IL-1, IL-6 and TNF-α could play central role in the pathogenesis of non thyroidal illness (NTI) syndrome by acting on hypothalamus pituitary-thyroid axis [18]. IL-1, IL-6 and TNF-α are effect as suppressor mediators on thyroid hormones during NTI [19]. Also, Bartalena et al. [20] tested that hypothesis in rats with induced hypothyroidism by administration of the methimazole throughout 3 weeks and they concluded that 48 hours after a single dose recombinant human IL-6 injection could reduce serum T3, T4 and TSH concentrations due to central effects of the cytokine.

From another aspect, trauma and wound healing could lead to significant elevation in pro-and anti-inflammatory cytokines [16,17]. Especially IL-1β and TNF-α, IL-6 and C-reactive protein, which is a predictor for acute-phase response and IL-10 have been used in biomarkers for monitoring traumatic inflammation and recovery period in clinically both human and veterinary medicine [18-20]. Ozcinar et al. [21] reported the pro-inflammatory cytokines IL-1β and TNF-α levels were higher after thyroid surgery in human. However, the sample size restricted to interpret of the obtained data in the present study. Slight increased levels of pro-inflammatory cytokines IL-1, IL-6 due to their stimulator effects on TNF-α production raised the level significantly, meanwhile slight elevation on the level of anti-inflammatory cytokine IL-10 might explain as a consequence of the thyroidectomy operation in accordance with previous studies [19,21].

In conclusion, surgical thyroidectomy intervention may cause of alteration in levels of cytokines on post-operative period. Therefore, whilst used in hypothyroid animals as a model in experimental studies, these data have to take into consideration.

REFERENCES

5. Kolibuchi N: Animal models to study thyroid hormone action in cerebellum. Cerebellum, 8, 89-97, 2009. DOI: 10.1007/s12311-008-0089-x

Table 2. Serum cytokine levels (mean±SEM, n=5)

<table>
<thead>
<tr>
<th>Group</th>
<th>IL-6 (pg/mL)</th>
<th>IL-10 (pg/mL)</th>
<th>TNF-α (pg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>28.02±2.39</td>
<td>30.20±2.35</td>
<td>36.51±1.63</td>
</tr>
<tr>
<td>Tx</td>
<td>39.05±5.49</td>
<td>36.04±3.73</td>
<td>39.61±2.09 b</td>
</tr>
</tbody>
</table>

a, b Different letters in the same column refers the differences between the groups (P<0.05)

