PCR Assay for Identification of Animal Species in Different Ready to Eat Raw Meat Samples [1,2]

Harun CERİT 1 Emek DÜMEN 2 Funda Hatice SEZGİN 3 Sevgi ERGİN 4 Gülay Merve BAYRAKAL 2

[1] This study was supported by the Istanbul University Scientific Researches Project Unit with Issue Number of 33896/2013
[2] This study was presented in International VETistanbul Group Congress, Saint-Petersburg, Russia

1 İstanbul University, School of Veterinary Medicine, Department of Animal Breeding and Genetics, TR-34320 Avcılar, İstanbul - TURKEY
2 İstanbul University, School of Veterinary Medicine, Department of Food Hygiene and Technology, TR-34320 Avcılar, İstanbul - TURKEY
3 İstanbul University, School of Engineering, Department of Industrial Engineering, TR-34320 Avcılar, İstanbul - TURKEY
4 İstanbul University, School of Medicine, Department of Clinical Microbiology, TR-34098, Fatih, İstanbul – TURKEY

INTRODUCTION

The composition of food is a major concern of consumers today. In the case of adulterated meat product consumption, several factors including economic, food safety (allergy) and moral reasons (religious belief), trigger such apprehensions. Among these concerns, consumers are most sensitive because of religious factors and do not tolerate even trace amounts of adulteration of meat products with forbidden meats like pork [1]. Hygiene and right labeling notified on the label of any food stuff are very important criteria especially for public health.

This study aimed to examine various meat and meat products (kebaps, lahmacun ingredients, minced meat, stews, various meat balls etc.) which are presented in various sales points (restaurants, butcher shops, groceries etc.) in Istanbul region, to determine their ingredients.
through DNA typing method and to specify the different animal tissues/residuals in these products. Besides, all of the samples are checked for the 6 primary foodborne pathogens which can pose serious microbiological threats for consumers’ health. The differences between adulterated and not adulterated products are determined by statistical methods.

MATERIALS and METHODS

Specimen Handling

Random sampling method has been used in this study. From 500 different sales points in the Istanbul region 500 meats and meat product samples have been collected.

Microbiological Analyses

The number of TAB was defined in Plate Count Agar (Oxoid, CM0325), coliforms in VRB (Oxoid, CM1082), *E. coli* in Tryptone Bile X-Glucuronide Medium Agar (Oxoid, CM0945), *S. aureus* in Baird-Parker Agar (Oxoid, CM2075) and DNASE Agar (Oxoid CM3021), *Salmonella* spp. in Xylose Lysine Desoxycholate Agar (Oxoid, CM0469) and Hectoen Enteric Agar (Oxoid, CM4019), and *L. monocytogenes* in Chromogenic Listeria Agar (ISO) Base (Oxoid, PO 5183) and Chromogenic Listeria Selective Supplement (ISO) (Oxoid, SR0226) and Oxford (Oxoid, CM856) and Palcam Agar (Oxoid, CM877) respectively to ISO 16649-2 2001, 4833 2003, 6888-1/A1 2004, 11290-1/A1 2005 and 6579/ A1 2006 [2-7].

PCR

DNA of all isolates were extracted according to the protocol of the manufacturer (Macherey-Nagel, Nucleospin® Tissue). All the extracts were stored at -20°C until they are used as target DNA for the PCR procedure.

Statistical Analysis

In order to study the risk differences among adulterated and non-adulterated samples upon the studied microbiological parameters and to determine the statistical significance of these, Pearson correlation analysis has been used [36].

RESULTS

18 (3.6%) of the samples showed chicken DNA, 33 (6.6%) of them showed sheep DNA and 1 (0.2%) of them showed horse DNA. None of them showed pork, donkey, cat, dog, mice, cockroach and fly DNA. The detailed refract of the results can be seen in Table 1. The positive results have been determined through Real-time PCR procedures.

The microbiological results are given in Table 2. According to coliform bacteria indications 41 (%8.2) of the samples, according to *E. coli* parameter indications 23 (4.6%) of the samples, according to *S. aureus* parameter indicators 29 (5.8%) of the samples, according to *L. monocytogenes* indications 8 (1.6%) of the samples, according to *Salmonella* spp., 3 (0.6%) of the samples have been determined as unfit for human consumption. 70.3% of coliforms, 58.7% of *E. coli*, 72.4% of *S. aureus* and 100% of *Salmonella* spp. and *L. monocytogenes* detections are found in the adulterated samples.

DISCUSSION

In many countries, food fraud and adulteration in food products, especially in meat and meat products are done either deliberately in order to increase the profit margin or involuntarily as a result of not following the food safety standards, especially in facilities which process more than one animal species.

The main ingredient of kebab in our country is mutton and many kebab shops prepare their kebabs from a mixture of bovine meat and mutton; however, mixing meat products of different animal species either deliberately or accidentally poses a microbiological threat for the consumers, causes the consumers to consume meat products beyond their information. As a result, the consumer is deceived and retrospective follow-up, which is a very important part of food safety procedures, becomes too difficult. It is possible that especially the products containing different types of meat are deliberately adulterated or the facilities producing these in deliberately mingle different meat products.

<table>
<thead>
<tr>
<th>Region</th>
<th>Sales Point</th>
<th>Extraneous DNA</th>
<th>DNA Positive Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Istanbul Europe - Istanbul Asia</td>
<td>Lahmacun ingredients</td>
<td>Chicken</td>
<td>11</td>
</tr>
<tr>
<td>Istanbul Europe - Istanbul Asia</td>
<td>Minced meat</td>
<td>Chicken</td>
<td>5</td>
</tr>
<tr>
<td>Istanbul Europe</td>
<td>Kebab</td>
<td>Chicken</td>
<td>2</td>
</tr>
<tr>
<td>Istanbul Europe - Istanbul Asia</td>
<td>Kebab</td>
<td>Sheep</td>
<td>30</td>
</tr>
<tr>
<td>Istanbul Europe</td>
<td>Minced meat</td>
<td>Sheep</td>
<td>3</td>
</tr>
<tr>
<td>Istanbul Asia</td>
<td>Minced meat</td>
<td>Horse</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>52</td>
</tr>
</tbody>
</table>
Medical literature states that some strains such as *S. aureus* are not very competitive and if their initial counts are lower, they cannot develop properly and their development is easily depressed in mixed cultures. Besides, lactic acid bacteria in the microflora of fermented foods and the antimicrobials they produce like the lactic acid, hydrogen peroxide and bacteriosin suppress pathogens such as *E. coli*, *S. aureus*, *L. monocytogenes* and *B. Cereus* [9]. It is thought that the staff hygiene practices are deficient in the facilities from which the *S. aureus* positive samples have been collected and this is the primary reason of these results.

The adulteration practices pose another risk which is often overlooked but actually important, that is food intolerance. The exogenous substances which are mixed in the adulterated products and the ingredients which might be different from the label information may cause the consumers to develop food intolerance reactions. This is considered one of the main risks of adulteration. Food intolerance may have various reasons. The prevalence of food intolerance reactions against foods and food additives is much higher than food allergies which include an immunological mechanism. Whatever the reason of the adulteration maybe, it results in deficient hygiene conditions and this is a serious threat for the facility, staff and product and consumer health. Besides, microorganisms which reproduce in meat and meat products because of hygiene deficiency can quickly develop single or multi resistance to antibiotics through complex genetic interactions. Our study shows that adulterated products pose a statistically meaningful higher risk for consumer health than unadulterated products. Total quality management systems and food safety practices should be applied together with the official inspection of the state authorities; programs to raise consumer awareness and continuous training programs for the staff responsible for food production should also be carried into effect. All these would be beneficial to reduce the incidence of the adulteration practices.

REFERENCES

Table 2

<table>
<thead>
<tr>
<th>Statistical Methods</th>
<th>Microbiological Parameter</th>
<th>Relevant Variable</th>
<th>Value</th>
<th>Asymp. Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi Sq</td>
<td>Coliforms</td>
<td>Samples confirmed for adulteration/samples which don't have adulteration</td>
<td>11.087</td>
<td>.000</td>
</tr>
<tr>
<td>Pearson Chi Sq</td>
<td>Escherichia coli</td>
<td>Samples confirmed for adulteration/samples which don't have adulteration</td>
<td>1.05</td>
<td>.000</td>
</tr>
<tr>
<td>Pearson Chi Sq</td>
<td>Listeria monocytogenes</td>
<td>Samples confirmed for adulteration/samples which don't have adulteration</td>
<td>12.102</td>
<td>.000</td>
</tr>
<tr>
<td>Pearson Chi Sq</td>
<td>Staphylococcus aureus</td>
<td>Samples confirmed for adulteration/samples which don't have adulteration</td>
<td>2.787</td>
<td>.000</td>
</tr>
<tr>
<td>Pearson Chi Sq</td>
<td>Salmonella spp.</td>
<td>Samples confirmed for adulteration/samples which don't have adulteration</td>
<td>3.902</td>
<td>.000</td>
</tr>
</tbody>
</table>

Values written in red are statistically relevant because they are smaller than P<0.005; Values written in red are positive for adulteration with regard to positive correlation. Adulterated meat and meat products pose a greater microbiological risk for consumer health than non-adulterated products.