IMMUNOHISTOCHEMICAL LOCALIZATION OF AROMATASE ENZYME IN THE TESTES OF 12-WEEK OLD COCKERELS FED A DIET EITHER DEPLETED OF OR SUPPLEMENTED WITH VITAMIN-D

Ibrahim KURTUL*

Geliş Tarihi: 30.11.2000

Summary: This study attempts to localize the aromatase enzyme in chicken testes and to determine the effects of vitamin D-depletion. While Leghorn male chicks were fed ad libitum from 1 day to 12 weeks of age. The testes from both groups were removed, fixed and cut for immunohistochemistry. Immunohistochemical observations showed no specific staining in the vitamin D-depleted chicken testes since there was no developed germ cell possessing aromatase activity. In vitamin D-repleted chicken testes, the specific immunomarker for aromatase activity seemed to be present in close proximity to the lumen of tubules seminifer convolutes. In the brain of the mature male turkey used as a positive control, there was specific staining, indicating the specificity of the primary antibody used. To date this study is the first to reveal the effect of dietary vitamin D-depletion on aromatase activity in chicken testes. More detailed studies should be conducted on more mature chickens.

Key Words: Aromatase, chicken, testis, vitamin D.

INTRODUCTION

Aromatase is an enzyme which is responsible for the conversion of testosterone to estrogen. Estrogen production has been shown in various tissues of many species including human, rats, and ferrets. It has been found that human adipose tissue is capable of producing estrogen by aromatization of androstenedione. Immunohistochemical localization, using a monoclonal antibody, has shown aromatase enzyme to be within the Leydig cell cytoplasm of normal adult human testes.

A study carried out in mature rats has revealed that aromatase activity in adult rats is regulated by luteinising hormone, LH. An in vitro study has indicated in immature rats that, estradiol level can be stimulated by follicle stimulating hormone (FSH)-dependent aromatase found in the Sertoli cells; however, LH in mature rats is more potent than FSH. Likewise, results of another study have showed that there was a significant increase in the level of aromatase activity in the Leydig cell but a decrease in the Sertoli cell with the age in the rat testes. In a later study it has been suggested that Sertoli cells function in the stimulation of aromatase

* Department of Anatomy Faculty of the Veterinary Medicine, Ankara University, Ankara-TÜRKİYE
activity in Leydig cells of adult rats.\(^9\)

High levels of aromatase activity have been found in hypothalamic and limbic nuclei of the rat brain, where the enzyme has been suggested to play an important role in both behavior and neuroendocrine function of androgens.\(^6\) Results of another study have suggested that aromatase activity in the hypothalamus-prefrontal area is regulated by testosterone or one of its metabolites.\(^8\) It has been shown that the brains of both sexes of ferrets have the capability of synthesizing estrogen during the perinatal period of sexual differentiation.\(^10\) Later, it was shown that the level of estrogen in the brain is augmented for the feedback control of LH secretion and regulation of sexual behavior in adult ferrets.\(^11\)

Reproductive behaviors and masculine aggressive behaviors in vertebrates are regulated by testosterone. Although testosterone is dominant in male behaviors, it is now well known that for the full expression of testosterone action in the brain, aromatization of the intact molecule to the estrogen is needed.\(^12\) This study demonstrated that aromatization compromises assertive behavior in Japanese quail, and is necessary for the activation of aggressiveness in this species.

Most recent studies have shown that germ cells of the mouse testis,\(^13\) and rooster epididymal sperm and testicular germ cells\(^14\) contain P\(_{450,arom}\) by immunocytochemistry using a polyclonal antihuman placental cytochrome P\(_{450,arom}\) antibody. In a study done using male and female siblings, the effects of aromatase deficiency caused by a gene mutation have shown that estrogen is essential for normal skeletal maturation in women as well as in men.\(^15\)

Thus, the study presented here is an attempt to reveal immunohistochemical localization of aromatase enzyme in the testes of vitamin D-depleted and firepleted chicken at 12-week of age.

MATERIAL and METHODS

White leghorn male chicks were raised from 1 day to 12 weeks of age in two different groups. Each group was fed one of the following diets: vitamin D-depleted diet + 3% calcium and vitamin D-repleted diet + 3% calcium. The diets had already been analyzed for the levels of vitamin-D and Ca. There were 9 chickens in each group. Chickens were weighed before they were euthanized by Sodium Pentobarbital.

For fixation and immunohistochemical localization of aromatase enzyme, testes were removed from chickens and were fixed for 2 weeks by the use of the freeze substitution technique at -70 °C, using absolute ethanol containing 0.5% glutaraldehyde. Fixed tissues then were processed and embedded in paraffin by the use of described techniques.\(^16,17\) Five micrometers in thickness of tissue sections from each group were serially cut for the immunohistochemical localization of aromatase.

Tissue sections were first deparaffinized and incubated with 5% urea. Secondly, the slides were incubated with 5% normal goat serum, NGS, and a polyclonal rabbit antihuman placental aromatase antibody (P\(_{450,arom}\) - a kind gift from Dr. Yoshio Osawa, Hauptman-Woodward Medical Research Institute, Buffalo, New York 14203). Control slides made from the tissue of mature male turkeys were also incubated in normal rabbit serum, NRS. Finally, they were incubated with biotinylated goat anti-rabbit IgG, with streptavidin, and with 0.05% 3,3'-diaminobenzidine hydrochloride (DAB) & 0.01% hydrogen peroxide. Tissue sections of mature male turkey brain were used as positive controls.

RESULTS

Specific immunomarker for aromatase activity in the vitamin D-repleted chicken testis in the sufficient morphological development seems to be present nearer the lumen of seminiferous convoluted tubuli (Fig. 1). Immunostaining of section adjacent to that in Figure 1, stained with non-immune serum is displayed in Figure 2. There was no specific staining for aromatase activity in the vitamin D-depleted chicken testes (Fig. 3). Immunostaining of section adjacent to that in Figure 3, stained with non-immune serum has also shown no specific staining for aromatase activity. In the hypothalamus-preoptic area of mature male turkey brain used as a positive control, there was a specific staining that con-
firmed the effectiveness the primary antibody used (Fig. 4). Immunocytocontrol of section adjacent to that in Figure 4., stained with non-immune serum is demonstrated in Figure 5. Adjacent section slides incubated with NRS did not show any specific staining, again indicating effectiveness of the primary antibody used in the experiment.

DISCUSSION

Aromatase activity in the testes of vitamin D-depleted and -repleted 12-week old chickens was studied. Immunohistochemical observations showed that there was no specific staining in the vitamin D-depleted chicken testes. In vitamin D-repleted chicken testes, specific immunomarker for aromatase activity seems to be present nearer the lumina of seminiferous convoluted tubuli. Pachytcne spermatocytes and spermatids are found deeper in the seminiferous convoluted tubuli. For this, immunomarker for aromatase activity may be non-specific. This may still indicate that aromatase begins to appear in more mature germ cells (at least at the level of pachytcne spermatocytes and spermatids), which is approximately when they begin to appear (12-weeks age in domestic chicken, as in our study). In the brain of mature male turkey used as a positive control, there was specific staining, indicating that the primary antibody used was specific to aromatase.

Aromatase is responsible for the conversion of testosterone to estrogen. The presence of estrogen in the testes of vertebrates is believed to depend on the conversion of testosterone to estrogen by aromatase enzyme. Tissues of various species have been documented to contain this enzyme such as human\(^2\),\(^3\) rats\(^5\),\(^6\) and rooster\(^14\).

A recent study has suggested that vitamin D, along with glucocorticoids, enhances the enzymatic activity and expression of mRNA for P450\(_{\text{arom}}\) gene expression\(^18\). Estrogen has been suggested to have an important role in the control of spermatogenesis\(^12\). In our study, if there is an inhibition of aromatase activity by vitamin D-depletion, decreased estrogen production also may be the cause of deterioration of the male germ cells seen in the seminiferous convoluted tubuli in the testes of vitamin D-depleted chickens. In other words, germ cells in the vitamin D-depleted chicken testes have not yet reached at the level of the aromatase production activity.

Aromatase enzyme activity is regulated by LH in the testes. An in vitro study\(^5\) has indicated that in the immature rat testis, FSH plays an important role on the aromatase activity in the Sertoli cells. However, in the mature rat testis, LH is more potent than FSH. Aromatase is present in hypothalamic and limbic nuclei of the brain, where the enzyme is thought to affect both behavior and neuroendocrine function of androgens.

Aromatase activity in the germ cells and sperm cells of the mature mouse\(^13\) and the rooster\(^14\) was shown. In both studies, the enzyme was present in pachytcne spermatocytes and further developed germ cells. These germ cells usually begin to appear in around 12-week-old chicken testes. In our study, since there was no immunostaining for aromatase activity in the seminiferous tubules of the testes from vitamin D-depleted chicken, it can be concluded that these spermatocytes were premature for aromatase activity. The chickens that were used in the present study were 12-weeks old. Apparently, to reveal the effects of vitamin D-depletion on aromatase activity in chicken testis, further studies should be conducted in more mature chickens at molecular level.

REFERENCES

Figure 3. No specific staining for aromatase activity in the vitamin D-depleted chicken. X400.

Resim 3. D vitamini ilave edilmeyen rasyonla beslenmis horozlardan aromataz aktivitesi icin herhangi bir spesifik boyama guzukmemekte. X400.

Figure 4. Specific staining for aromatase activity in the brain of turkey. (II) (positive control). X400.

Resim 4. Hindi beyinde aromataz aktivitesini gösteren spesifik boyama, (pozitif kontrol), x400.

Figure 5. Immunocontrol of sequential of figure 4, indicating effectiveness of primary antibody used in the study. X400.

Resim 5. Sekil 4 deki guzuintünün immun kontrol boynasinda herhangi bir spesifik boyama guzukmemekte. X400.