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Summary
The aim of this study was to investigate usefulness of Kalman Filter (KF) Random Walk methodology (KF-RW) for prediction of 

breeding values in animals. We used body condition score (BCS) from dairy cattle for illustrating use of KF-RW. BCS was measured by 
Swiss Holstein Breeding Association during May 2004-March 2005 for 7 times approximately at monthly intervals from dairy cows 
(n=80) stationed at the Chamau research farm of Eidgenössische Technische Hochschule (ETH), Switzerland. Benefits of KF were 
demonstrated using random walk models via simulations. Breeding values were predicted over days in milk for BCS by KF-RW. Variance 
components were predicted by Gibbs sampling. Locally weighted scatter plot smoothing (LOWESS) and KF-RW were compared under 
different longitudinal experimental designs, and results showed that KF-RW gave more reasonable estimates especially for lower 
smoother span of LOWESS. Estimates of variance components were found more accurate when the number of observations and 
number of subjects increased and increasing these quantities decreased standard errors. Fifty subjects with 10 observations each, 
started to give reasonable estimates. Posterior means for variance components were found (with standard errors) 0.03 (0.006) for 
animal genetic variance 0.04 (0.007) for permanent environmental variance and 0.21 (0.02) for error variance. Since KF gives online 
estimation of breeding values and does not need to store or invert matrices, this methodology could be useful in animal breeding 
industry for obtaining online estimation of breeding values over days in milk.

Keywords: Kalman filter, Body condition score, Bayesian methods

Damızlık Değerlerinin Kalman Süzgeci ile Tahmini: 
Süt Sığırlarından Toplanan Vücut Kondüsyon Puanları İçin 

Bir Uygulama

Özet
Bu çalışmanın ana amacı; rassal yürüyüş taslamını kalman süzgeci (RY-KS) ile kullanarak çiftlik hayvanlarında zamana dayalı 

damızlık değerlerinin tahmin edilebilmesinin uygunluğunun araştırılmasıdır. Veri seti Chamau enstitüsündeki süt ineklerinden, İsviçre 
Holştayn birliği tarafından elde edilmiştir (n=80). Yerel ağırlıklı uzanım tahmincisi (LOWESS) yöntemi ve RY-KS benzeşim yolu ile farklı 
deneme desenleri için karşılaştırıldı, sonuçlar benzer bulunsa da, bazı şartlar altında RY-KS daha uygun sonuçlar verdi. Birey ve gözlem 
sayılarının varyans unsurları ve üreteç tahminine olan etkileri incelendi ve her ikisinin arttırılmasının daha doğru tahminleri daha küçük 
standart hatalarla verdiği saptandı. Varyans unsurları gibbs örneklemesi ile tahmin edildi. Soncul ortalamalar genetik varyans için 0.03 
(0.006), kalıcı çevre için 0.21 (0.02) ve hata varyansı için 0.21 (0.02) olarak hesaplandı. Kalman Süzgeci damızlık değerlerinin güncel 
tahminlerini vermesi ve matrislerin devrilmesine ihtiyaç göstermemesi nedeni ile büyük veri setlerinden zamana dayalı damızlık 
değerlerinin tahmin edilmesinde faydalı olabilir.

Anahtar sözcükler: Kalman süzgeci, Vücut kondüsyon puanları, Bayesçi yöntemler
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Predicting Breeding Values...

INTRODUCTION

A filter is a device that is used for example to separate 
water from particles. By analogy this idea was extended to 
separation of signals from noise 1 in engineering context. 
Kalman Filter (KF) was defined with Bayesian features 
by Harrison and Stevens 2 as Bayesian Dynamic Linear 
Model3 although West and Harrison 4 quoted as “Bayesian 
forecasting is Kalman Filtering” is akin to saying that 
statistical inference is least squares”. Migon et al.5 described 
some special characteristics of KF as following; i) all 
relevant information’s are used, including history, factual 
or subjective experiences, and knowledge of forthcoming 
events ii) routine forecasting is produced by a statistical 
model and exceptions can be considered as an anticipation 
or in a retrospective base iii) prospective (what happened) 
and retrospective (what if) analysis are easily accommodated 
iv) model decomposition, a full Bayesian forecasting model 
may be decomposed into independent dynamic linear 
models, each one describing particular features of the process 
under analyses. More details about some of literatures about 
Kalman Filter could be found in 6.

KF methodology could be useful in animal breeding 
industry when analyzing very big time series data sets since 
it does not need store or invert matrices. In addition online 
estimation of breeding values could be useful for selection 
schemes over time. As was shown by Van Bebber et al.7 KF 
could also be used for detecting false measurements in 
experimental farms.   

We investigated the possible application of KF-RW in 
field conditions. In this context, we chose body condition 
score (BCS) in dairy cows 8,9. Body weight, feed (dry matter) 
intake and milk production level together form an important 
cluster of functional traits that determines the amount of 
fat reserves stored in the body; this is now recorded in many 
countries as ‘body condition score’ or BCS 8,9. A common 
body condition scoring system has been developed to 
estimate the BCS of cows in a herd. This system provides 
producers a relative score based on an evaluation of fat 
deposits in relation to skeletal features. The scoring method 
involves a manual assessment of the thickness of fat cover 
and prominence of bone at the tail head and loin area. 
The most widely used body condition scoring system for 
dairy cattle assigns scores from 1 to 9 in North America and 
from 1 to 5 in most European countries, with the lowest 
score meaning emaciated and carrying virtually no fat 
and the highest score meaning excessively fat. Veerkamp 
and Brotherstone 10 estimated variance components for 
BCS at calving and for average BCS over the first 26 wk 
of lactation; they reported heritability estimates for BCS 
ranging between 0.24 and 0.43. Jones et al.11 reported for 
Holstein Friesian heifers moderate heritability estimates of 
BCS, varying with stage of lactation from 0.23 to 0.28. 

Sallas and Harville 12 suggested to use KF for prediction 

of breeding values for consecutive lactations. Forni et al.13 
used dynamic linear model via KF to modeling of cattle 
growth data. The main aim of this study was to provide  
theoretical developments of KF-RW in the context of adapting 
it to analysis of animal breeding data with an emphasis 
on application of KF-RW in predicting breeding values over 
DIM for BCS. This would be the first use of KF-RW for predicting 
breeding values over DIM. Simulations are performed 
to check the validity of methods and comparison of different 
sub-models.

MATERIAL and METHODS

Statistical Models and Analyses

Random Walk Model: For demonstration purposes we 
used random walk model and it is given below. 

ttty εa += , ( )2,0 et N σε ∝

ttt ηaa +=+1 , ( )2,0 nt N ση ∝  (1) 
   

In (1) the first equation is called the observation equation 
and the second equation is called the state equation. We 
assumed that observations yt, depends on unobservable 
quantity at , and our aim was to do statistical inference on 
at (states). We assumed constant variances for εt and ηt as 

2
eσ  and 2

nσ  respectively with independent, identically and

normally distributed random variables with zero means. 
LOWESS 14 smoother was used to make comparisons with 
random walk model (1) in recursive form (KF-RW).

Parameter values assumed were 2
nσ =100 and 2

eσ =25 
for simulating observations, y, from random walk model. A 
total of 1000 Gibbs cycles with first 50 cycles used as burn 
in period used to obtaining estimates of states, θ̂ , and 
variance components 

2
nσ , 2

eσ . For genetic analyses of
traits following mixed model is normally used in animal 
breeding;

epZaZXây pa +++=  (2)

where y is the vector of observations, â is the vector of 
fixed effects, a is the vector of breeding values, p is the 
vector of random permanent environmental effects, X, Za, Zp are design matrices and e is the vector of random 
residual effects.

For the random effects it was assumed that 
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where 2
aσ , 2

pσ , and 2
eσ  ; are genetic, permanent environ-

ment and error variances. A is the additive genetic 
relationship matrix for the animals; I is an identity matrix. 

In the following, we show general assumptions used in 
KF-RW method, based on Bayesian principles. Proportional 
joint posterior distribution without constant terms given 
in (3) using (2) based on following recursive relationship (4);

LOWESS: The LOWESS model 12 was used to capture the 
local variability by weighted least square regression using 
different smoother spans. 

Implementation

All computations were made in R 14, using the package 
called MASS 15 implemented in R, for sampling from 
multivariate Normal distributions. We compared KF-RW 
and LOWESS approach. We investigated effect of different 
number of subjects and different number of observations 
per subject on estimation of both states and variance 
components. Finally we applied the theory to animal 
breeding data to predict breeding values over DIM.

 

Application of KF-RW Method to BCS Data

BCS was measured by the Swiss Holstein Breeding 
Association as described by Trimberger 16 using 1 to 5 scale, 
during May 2004-March 2005 for 7 times approximately 
at monthly intervals from multiparous dairy cows (n=80) 
stationed at the Chamau research farm of the Swiss Federal 
Institute of Technology, Switzerland. The experimental 
procedures of the farm followed the Swiss Law on Animal 

Protection and were approved by the Committee for the 
Permission of Animal Experiments of the Canton of Zug, 
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Last line of (3) are product of density of scaled inverted chi-square distributions assumed prior for variance parameters. 
After algebraic manipulations conditional distributions could be written as following,

where in the last lines Q stands for quadratic form of the 
respective error terms and DF degrees of freedoms.

~

~
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Zug, Switzerland. Results of 7 BCS sessions split into 4 
periods over DIM to reduce number of missing values. 
Missing values filled in with subject specific averages. A 
summary of the dataset used for BCS analysis is given in 
Table 1. The pedigree file included 637 animals.

For genetic analyses of BCS following mixed model was 
used;

  
  (4)

where y is the vector of observations included 320  
(80 animals, with 4 repeated measurements each) 
observations, β is the vector of fixed effects including 
breed (n=80; b1=Holstein-Friesian, n1=42, b2 = Brown Swiss, 
n2 =38) age at calving, and year-season interaction, a is 
the vector of breeding values, p is the vector of random 
permanent environmental effects, X, Za, Zp are design 
matrices and e is the vector of random residual effects.

RESULTS 

Random Walk Model for Simulated Data Sets

We compared predictions of simulated observations 
from random walk model with different smoother spans for 
LOWESS and KF-RW (Table 2). Predictions were found to be 
both reasonable by KF-RW models and LOWESS approach.

We also investigated effect of different sampling sizes 

to state and variance components estimates (Table 3) from 
KF-RW. Lowest number of observations (n=5) with lowest 
number of subjects (n=50) gives reasonable predictions of 
the states but incearesing both sampling sizes also decrease 
the standard errors of the estimates of the states. However 
prediction of variance components was found far from 
their parameters values with the lowest number of 
observations (n=5) and this effect gradually decreased by 
increasing the number of subject holding the number of 
observations as fixed. Standard errors of predicted variance 
components were found decreased by increasing the both 
number of observations and number of subjects.

Prediction of Breeding Values for Body Condition
Scores by Kalman Filter

We analyzed BCS data for permanent environmental 
variance without genetic effects in order to decide number 
of Gibbs cycle and burn in period. Repeated runs of the 
same analyses for the same priors showed that monte carlo 
errors were small. Two thousand Gibbs cycles with 200 
burn-in period were found reasonable. However, probably, 
since each cow consisted of small number of repeated 
measurements (n=4) different prior values gave different 
estimates, especially for smaller values of scaling factors, 
s, (Table 4).

Increasing the scaling factor, s, gave more stable 
estimates, hence v=5 with s=0.5 chosen for parameters of 
scaled inverted chi-square prior distribution for genetic 
analyses of the BCS dataset. Scatter plots of gibbs samples 

Table 1. Number of records, means, and standard errors for body condition scores for some selected days of first lactation

Tablo 1. Vücut puanları için bazı günlere ait gözlem sayıları, ortalamalar ve bunlara ait standart hatalar

DIM
Body Condition Score 

n X SE

1 80 3.24 0.006

75 80 3.16 0.005

150 80 3.22 0.005

305 80 3.21 0.006

Table 2. Means of predictions of observations simulated from random walk model by different smoother spans for LOWESS and Kalman Filter random walk 
methodologies

Tablo 2. Kalman Süzgeci rassal yürüyüş taslamı ve LOWESS (farklı üreteçler için) yöntemlerinin rassal yürüyüş benzeşimini tahmin ortalamaları

Smoother Span Observations LOWESS Kalman Filter

f=0.1 201.19 (0.12) 202.96 (0.02) 202.78 (0.08)

f=0.5 199.40 (0.11) 201.32 (0.06) 199.71 (0.07)

f=0.7 261.40 (0.25) 264.42 (0.21) 263.57 (0.23)

f=0.9 157.08 (0.17) 162.35 (0.12) 159.15 (0.15)

f=0.01 203.62 (0.13) 202.93 (0.06) 204.71 (0.09)

f=0.05 160.75 (0.15) 161.41 (0.11) 161.51 (0.13)

f=0.07 184.61 (0.16) 182.30 (0.13) 185.08 (0.14)

f=0.09 116.91 (0.18) 119.25 (0.15) 117.42 (0.17)

 



























































1

1
221

1
22

1

1
22

21,1121 IZZIaZbXyZIZZ
tttttt pptpatpp

pe
t

p
t

epe

aN


tttttepa ypbap ,,,,,, 222  ~
 

2
DF

aaa SvQ



ttttteap ypbap ,,,,,, 222  ~
 

2
DF

ppp SvQ



tttttpae ypbap ,,,,,, 222  ~
 

2
DF

eee SvQ



epZaZXβy pa 



631

KARACAÖREN, JANSS
KADARMIDEEN

were visually investigated (figures are not shown), since no 
patterns were observed for all variance components; it was 
decided that sample size was reasonable. Posterior means  
for variance components found 0.21 (0.02) for error variance, 
0.03 (0.006) for animal genetic variance and 0.04 (0.007) for 
permanent environmental variance. In this data set variation 
was found quite small within and between animal.

DISCUSSION

In the simulation study predictions of observations were 
found to be both reasonable by KF-RW models and LOWESS 
approach. However mostly KF-RW estimates were found 
better than those of LOWESS estimates (Table 2). It is difficult 
to compare two methodologies directly, since each of them 
has their own specifications, but KF-RW model does not 
need any tuning parameters. However predicting variance 
components needs additional computing power in KF-RW.

We also investigated effect of different sampling sizes to 
state and variance components estimates (Table 3) from KF-
RW. Estimates of states were getting closer to observations 
as number of observations and number of subjects 
increased. Also it was observed that increasing both 
quantities decreased associated standard errors. Variance 
components estimates were found to be more accurate 

when number of observations and number of subjects 
increased. Again increasing these quantities decreased 
standard errors. Fifty subjects with 10 observations each, 
started to gave reasonable estimates.

In real biological dataset, different from simulated 
dataset, number of observations per animals was low (n=4) 
and this was in effect for predicting variance components 
(Table 4). Different prior values gave very different variance 
component predictions especially for smaller values of 
scaling factors, however it was stabilized by increasement of 
both degree of belief and scaling factors. Based on various 
runs we decided to use v=5, s=0.5 for genetic analyses of the 
BCS dataset.

We used 2000 Gibbs cycles with 200 burn in period, 
based on results of different runs (results not shown). Since 
dataset were obtained under homogenized, controlled 
experimental farm; small amount of variances predicted 
for both within and between animals. Visual inspection 
showed that predictions of observations were agreed 
with actual observations.

We provided a general theoretical framework for use 
of KF-RW in the analyses of animal breeding data, with an 
emphasis on application of KF-RW in predicting breeding 
values for BCS measured as a longitudinal trait. Simulations 

Table 3a. Means of estimates of states θ̂ , observations y . Standard errors given in bracets

Tablo 3a. Durumların θ̂ ve gözlemlerin y  tahminlerinin ortalamaları. Standart hatalar parantez içinde verilmiştir

Number of 
Subjects 

Number of Observations

5 10 20 50

θ̂
 

y θ̂ θ̂ θ̂
50 198.80 (0.04) 198.85 (0.05) 201.08 (0.02) 201.02 (0.02) 200.67 (0.02) 200.67 (0.01) 196.57 (0.009) 196.52 (0.001)

100 200.77 (0.02) 200.87 (0.03) 200.19 (0.01) 200.24 (0.01) 200.02 (0.008) 199.92 (0.009) 197.75 (0.005) 197.55 (0.005)

200 199.58 (0.01) 200.38 (0.02) 199.33 (0.006) 199.58 (0.07) 200.00 (0.004) 200.04 (0.004) 200.72 (0.002) 200.68 (0.002)

500 199.46 (0.004) 199.54 (0.005) 199.66 (0.003) 199.63 (0.002) 199.42 (0.001) 199.35 (0.002) 200.89 (0.0009) 200.98 (0.001)

1.000 199.63 (0.002) 199.86 (0.002) 199.95 (0.001) 200.08 (0.001) 199.48 (0.0009) 199.53 (0.0007) 200.05 (0.0005) 200.04 (0.0005)

Table 3b. Means of predictions of variance components ( 
2ˆ eσ  

2
nσ  ). Standard errors given in bracets

Tablo 3b. Varyans unsurlarının tahminlerinin ortalamaları 2ˆ eσ  2
nσ  . Standart hatalar parantez içinde verilmiştir 

Number of  
Subjects

Number of Observations

5 10 20 50

2
nσ 2ˆ eσ

50 71.00 (0.13) 40.52 (0.12) 26.01 (0.03) 102.58 (0.07) 29.43 (0.02) 99.97 (0.01) 26.07 (0.004) 103.99 (0.01)

100 95.58 (0.10) 35.71 (0.11) 25.42 (0.01) 101.56 (0.04) 31.34 (0.01) 93.88 (0.02) 26.39 (0.003) 92.62 (0.007)

200 97.38 (0.05) 33.92 (0.05) 27.91 (0.01) 94.67 (0.02) 23.44 (0.003) 98.43 (0.009) 26.92 (0.001) 102.15 (0.003)

500 100.31 (0.02) 36.02 (0.02) 25.47 (0.003) 99.64 (0.009) 23.18 (0.001) 102.09 (0.001) 25.10 (0.0005) 99.32 (0.001)

1.000 97.75 (0.007) 20.94 (0.01) 23.16 (0.001) 101.98 (0.004) 23.71 (0.0007) 100.93 (0.002) 24.47 (0.0003) 100.59 (0.0008)

2ˆ eσ
 
: Estimates of error variance

 
2
nσ

 
: Estimates of states variance

2
nσ 2

nσ 2
nσ2ˆ eσ 2ˆ eσ 2ˆ eσ

y y y



632
Predicting Breeding Values...

were also performed to check the validity of methods 
and comparison of different sub-models. Although we 
used random walk model; model choice depends on the 
variability and prior information about dataset, different 
models could be more realistic in different applications. 
Since random walk model is not stationary it may not be 
suitable for animal breeding data under certain conditions. 
We assumed constant variances for state and error 
components over DIM, however this assumptions could 
be extended for time dependent variance components 
models, and it could be claimed that it would give more 
realistic results. Since KF gives online estimation of breeding 
values and does not need to store or invert matrices, this 
methodology could be useful in animal breeding industry for 
obtaining online estimation of breeding values over DIM. 
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Table 4. Estimates of state ( 2
nσ ) and error variances ( 2ˆ eσ ) for different parameter values of scaled inverted chi-square prior distributions (v degree of belief, s 

scaling factors)

Tablo 4. Durumların ( 2
nσ ) ve hata varyanslarının ( 2ˆ eσ ) ölçeklenmiş tersinir kikare öncül dağılışı  ile tahmini (v inanç derecesi, s ölçekleme faktörü)

s
v=0.01 v=1 v=2 v=3 v=4 v=5

2
nσ 2ˆ eσ

s=1 0.0005 0.18 0.02 0.18 0.04 0.19 0.04 0.20 0.05 0.21 0.06 0.21

s=0.1 0.00009 0.18 0.04 0.18 0.009 0.17 0.01 0.17 0.02 0.17 0.02 0.18

s=0.5 0.0003 0.18 0.01 0.18 0.03 0.19 0.03 0.19 0.04 0.19 0.04 0.19

Standard errors varied between 0.000001-0.14

2
nσ 2

nσ 2
nσ 2

nσ 2
nσ2ˆ eσ 2ˆ eσ 2ˆ eσ 2ˆ eσ 2ˆ eσ
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